Improved Telescopic Nesting for Hurricane Forecasting

Samuel Trahan, Xuejin Zhang
Greg Thopmson, Shaowu Bao
Tim Marchok, Hua-Ya Chuang,
Qingfu Liu, Hualu Pan, Dave Zelinsky
Young Kwon, Zhan Zhang, Weiguo Wang
Vijay Tallapragada, S. Gopalakrishnan
Ligia Bernadet, Brad Ferrier
Telescoping Nesting: What and Why?

- Some areas are more important than others
- Some areas need higher resolution than others

Sample 27:9:3 Gustav Run

θ (K) at 650 mbar
2012 Upgrade: 3km Resolution

• Hurricanes need higher resolution:
 – Need <4km for satellite products
 – <5km to represent wind maximum
 – <5km for mesovortices, vorticity waves
 – <3km for resolved convection
 – <1km for vorticity sheets

• Cannot do 3km everywhere. Too expensive!
27:9:3 2012 Implementation

Problems Encountered

• Drastic improvement to track, improved structure, but *no improvement to intensity*

• Problems:
 – Domains did not properly follow storm
 – 3km domain too small
 – physics timestep too large
 – Convection scheme differences degrade synthetic satellite products.
27:9:3 Planned 2013 Implementation
Large Improvement

• Large 3km domain, smaller timesteps, better nest motion algorithm, improved nest-parent interpolation.
• and much more
Nest Motion Trouble
MSLP Tracking No Longer Reliable

- 3km can resolve mesolows, vorticity sheets
 - Stronger localized MSLP values
- Bad MSLP calculation method
 - Spurious MSLP over mountains
Nest Motion Solution
Membrane MSLP

\[dP = -\rho gdz \]

• Re-express atmosphere as ocean world on pressure levels
• Extrapolate virtual temperature on pressure surfaces
• Smooth atmosphere
• Integrate to get \(P(z=0) \)
Nest Motion Solution
Nine Field Tracker

• MSLP alone is not enough
• Track nine thermodynamic and wind fields
 – Used in NCEP Tracker for storm track and intensity
 – Parallelized, modified for E grid rotated lat-lon
New Nest-Parent Interpolation
(also parent to nest)
Old Method: Two Step Interpolation

New Method: Single Step
New Nest-Parent Interpolation
(also parent to nest)

• Allows non-bulk microphysics
 – Tested with Thompson and WSM6 schemes
• Faster
• Improved upscale interpolation
Larger Domain, Smaller Timesteps

• 5x5 degree grid too small – go to 6x6 degree
 – 50% more gridpoints (expensive!)
 – Affordable on new Intel/Linux WCOSS machines.

• Smaller physics timesteps:
 – 27km: 180 sec -> 90 sec
 – 9km: 180 sec -> 90 sec
 – 3km: 180 sec -> 30 sec
Improved Synthetic Satellite Products
Work in Progress

- Convection scheme in 27km, 9km domain, but not 3km.
- Post includes convective rain when calculating synth. sat.
- Result: discontinuities in satellite products.
- Meso-SAS convection scheme (work in progress)
 - Degradation of intensity skill
 - Working on fixing this
Conclusion

• Improved telescopic nesting in planned next HWRF model:
 – Larger domain, smaller timesteps, better nest motion algorithm, new interpolation schemes
 – Drastic improvements to intensity skill

• Developing better convection scheme to fix satellite product issues.