Next Generation Weather Prediction Research at NASA GMAO

Bill Putman (presenter)
Michele Rienecker
Ron Gelaro
Arlindo da Silva
Max Suarez
Ricardo Todling
Andrea Molod
Donifan Barahona

GEOS-5
3.5-km Clouds
Multi-Scale Modeling Approach

Seamless prediction in a unified model development framework

A comprehensive global model for:

simulation – assimilation – weather – climate

Various resolutions

1-deg (climate) ¼-deg (weather) 10- to 3.5-km (mesoscale)

Hydrostatic and non-hydrostatic

Resolution dependent physics parameterizations

- Moist processes and aerosol cloud interactions
- Multi-moment cloud micro-physics
- Cloud and deep convective parameterization
- Non-precipitating shallow convection
- Gravity wave drag

Multiple HPC platforms [Including accelerators GPUs/MICs]

Within a single codebase and a single build
The Goddard Earth Observing System model (GEOS-5)

- Non-Hydrostatic Cubed-Sphere Finite-Volume dynamics (in collaboration with SJ Lin at GFDL)
- Relaxed Arakawa-Schubert convection scheme (Moorthi and Suarez, 1992)
 - Includes a stochastic trigger for deep convection (Tokioka, 1988)
- Prognostic cloud cover and cloud water/ice schemes
 - Includes large scale condensation, evaporation, autoconversion and accretion of cloud water and ice, sedimentation of cloud ice and re-evaporation of falling precipitation (Bacmeister et al., 2006)
 - Two-moment cloud microphysics for stratus (Morrison and Gettelman, 2008) and convective (Barahona et al. 2013) clouds.
 - Explicit ice nucleation (Barahona and Nenes, 2009) and CCN activation (Fountoukis and Nenes, 2005) coupled to the aerosol.
- Longwave radiative processes (Chou and Suarez, 1994) [options to use RRTMG]
- Shortwave radiative processes (Chou, 1990 and 1992) [options to use RRTMG]
- Turbulence parameterization is based on the Lock (2000) scheme, acting together with the Richardson-number based scheme of Louis and Geleyn (1982)
- Monin-Obukhov surface layer parameterization (Helfand and Schubert, 1995)
- Gravity wave parameterization computes the momentum/heat deposition into the grid-scale flow due to orographic (McFarlane, 1987) and nonorographic (after Garcia and Boville, 1994) gravity wave breaking
- Catchment based Land Surface Model (Koster et al, 2000)
Relaxed Arakawa-Schubert (RAS) Convection

- Stochastic Determination of Cumulus Entrainment in RAS
 - Based on Tokioka et al. (1988) Minimum entrainment rate:
 \[\mu_{\text{min}} = \frac{0.2}{\text{MAXD}} \]
 where MAXD is a resolution dependent parameter specifying the diameter for the largest convective plume
 - Stochastic determination of the Tokioka limit determined at random
 - Selective suppression of RAS convection scheme as we move to higher resolution

2009 Atlantic Hurricane Bill

Before relaxation of the deep convection:
- a lack of intense convective precipitation
- an excess of shallow precipitation
- a very small eye, filled with drizzle
Numerical Weather Prediction

Hurricane Sandy

- Accurate 5-day Track Forecasts from GEOS-5
 ¼-deg particularly from Oct 26 through landfall
- High-resolution improves intensity and structure
 Fine-scale details of surface winds and eye-wall
 Fidelity of warm front in the northeast quadrant

7-km GEOS-5 Surface Winds
Oct 29th 00 Hours (EDT) 65-Hour forecast

OSCAT Surface Wind Observations
Oct 29th 00 Hours (EDT)
Statistical Distribution of Detected Cloud Clusters

Deep convective clusters detected from GEOS-5 and IR observations in the tropics [15-19 September 2010]

Detected clusters (top) and probability distributions (bottom) of detected cloud clusters

IR observations compared to GEOS-5 with increasing resolution [28-km 14-km 7-km] (bottom-left)

IR observations compared to GEOS-5 varying dynamics/physics coupling time-step at 14-km (bottom-right)
10-km GEOS-5 Global Mesoscale Simulation

- May-2005 through April-2007
- 72-levels Surface to 0.01 hPa
- Hydrostatic DT=450s ; RAD=1800s
- Over 400 TB of output
- “Nature Run” for OSSEs

- 25 simulated days / wallclock day
- 3-million processor hours
- Using 3750 Intel Westmere Cores
- Computational breakdown by component →

![Map of tropical cyclones](image)

Fine-scale structure of tropical cyclones (divergence)

<table>
<thead>
<tr>
<th>2005 (Jun-Dec)</th>
<th>2006 (Jan-Dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Atlantic</td>
<td>North Atlantic</td>
</tr>
<tr>
<td>10-km GEOS-5</td>
<td>10-km GEOS-5</td>
</tr>
<tr>
<td>Storms</td>
<td>23</td>
</tr>
<tr>
<td>TS</td>
<td>7</td>
</tr>
<tr>
<td>Hurr</td>
<td>16</td>
</tr>
<tr>
<td>Major</td>
<td>6</td>
</tr>
</tbody>
</table>
10-km GEOS-5 Global Mesoscale Simulation

- In addition to providing a realistic representation of the meteorology
- Using GOCART the simulation also provides aerosol direct effects including:
 - global aerosol distribution – aerosol vertical profiles – aerosol optical thickness

Dust (red-orange) – Organic and black carbon (green) – Sea salt (blue) – Sulfates (white)
4d-Atmospheric Data Assimilation

- Future 4d-strategy will be ensemble-based in one of following flavors:
 - Hybrid-4d-Var – flow-dependent initial error covariance
 - 4d-Ens-Var – ensemble replaces TL and AD models
- Analysis core: Gridpoint Statistical Interpolation (GSI)
- GEOS-5 GCM using cubed-sphere dynamics
- Assimilation still based on incremental analysis update (IAU)
- Implementation will be an upgrade on current 3d-hybrid development

Schematic of IAU-based 3d-Ens-Hybrid

Spaghetti plot shows typical spread in GMAO ensemble of backgrounds

http://gmao.gsfc.nasa.gov/research/atmosphericassim/
Computational Costs

10-day AMIP-Style simulation at 72 levels

<table>
<thead>
<tr>
<th>Resolution</th>
<th>CPUs</th>
<th>WallClock Time (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b72 (2-deg)</td>
<td>48</td>
<td>0.25</td>
</tr>
<tr>
<td>c72 (1-deg)</td>
<td>96</td>
<td>0.5</td>
</tr>
<tr>
<td>d72 (0.5-deg)</td>
<td>384</td>
<td>1</td>
</tr>
<tr>
<td>e72 (0.25-deg)</td>
<td>768</td>
<td>4.75</td>
</tr>
<tr>
<td>c720 x 72L (14-km)</td>
<td>1350</td>
<td>8</td>
</tr>
<tr>
<td>c1440 x 72L (7-km)</td>
<td>4000</td>
<td>22</td>
</tr>
</tbody>
</table>

Scaling for Lat-Lon Version at d72 (1/2 deg)

<table>
<thead>
<tr>
<th>Layout NX</th>
<th>Layout NY</th>
<th>Total PEs</th>
<th>Total Time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>36</td>
<td>216</td>
<td>1.72</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>384</td>
<td>1.21</td>
</tr>
<tr>
<td>12</td>
<td>72</td>
<td>864</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Scaling for Cubed-Sphere Version at c180 (1/2 deg)

<table>
<thead>
<tr>
<th>Layout NX</th>
<th>Layout NY</th>
<th>Total PEs</th>
<th>Total Time (hrs)</th>
<th>Speedup from Lat-Lon</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>36</td>
<td>216</td>
<td>1.49</td>
<td>1.15x</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>384</td>
<td>0.61</td>
<td>1.98x</td>
</tr>
<tr>
<td>12</td>
<td>72</td>
<td>864</td>
<td>0.35</td>
<td>2.06x</td>
</tr>
</tbody>
</table>