Coupled HYCOM-HWRF (HyHWRF) System: Past, Present and Future

Hyun-Sook Kim, Hendrik Tolman, Carlos Lozano, Dan Iredell
the HYCOM team @ MMAB/EMC
the HWRF teams @ EMC

Hendrik L. Tolman
Chief, Marine Modeling and Analysis Branch
NOAA / NWS / NCEP / EMC

Hendrik.Tolman@NOAA.gov
Past efforts, including Lessons learned

Current efforts

- Complete the development of HyHWRF version 2 with eddy-resolving, 1/12-degree global HYCOM (v.2.2.19).
- Implement Ocean Data Assimilation to use in-situ measurements during TC.
- Optimize configuration.

Future plan

- Employ HyHWRF for TC forecasts in different basins.
- 3-way coupling HYCOM-HWRF-WAVEWATCH III ®.
Past efforts

Performance of Parallel, Real-Time Forecasts of Atlantic TCs Each Season from 2008 to 2011

- Good comparison of SST between simulations and observations (AXBT and SST analysis).
- Good comparison of simulated SST cooling and cold wake with the observed, e.g., 6°C for Ike (09L) 2008.
- Comparable Hurricane Intensity and Track Forecast Skill (next slides for details).

Lessons learned

- Get ocean right first, then reconsider HWRF.
- Optimal ocean configuration is necessary.
- Good comparison of SST owing to DA in RTOFS-Atlantic, but improvement is required for under-estimate MLD and overestimate Z26.
Past efforts

Past Performance of HyHWRF Forecast: 2010 season
Alex, Danielle, Earl, Fiona, Igor, Julia and Karl (198 cases)

Comparison with HWRF (red)

**Track**: Comparable forecast skill, but showing ~10 nm improvement in error, STD and bias magnitude.

**Intensity**: Average error improved for 0-72 h, followed by degradation due to large standard deviation; However, significant improvement in the intensity bias (by ~ 5 kt).

Track  (HyHWRF – Green)  Intensity
Past Performance of HyHWRF Forecast: 2011 season

Gert, Irene, Katia, Maria, Ophelia, and Philippe (186 cases)

Comparison with HWRF (blue)

**Track**: Similar average error, but showing improvement in STD for 24-120 h; Bias the same in both direction and magnitude.

**Intensity**: Improvement in average error by ~ 4 kt for 24-120 h, but slight degradation in STD for the same period; Large improvement in bias by ~ 5 kt, including no bias for 0-36 h.
Data Assimilation (DA)

1. General Objectives

- Improve the estimate of sub-surface ocean structures based on remotely sensed observations of SSH, SST, in-situ T and S; and model estimates.
- Improve the joint assimilation of SSH, SST, T and S in a high resolution ocean forecast system.

2. Specific Objectives

- Improve initial condition of the oceanic structure, as frequently as observations allow.
- Implementation specifically designed to use in-situ observations during TC, including AXBT.
Current efforts (DA)

Method

- Quality Control:
  - Observation accepted if
    - Anomaly from climatological mean is within xSTD ($x=\sim2.3$); and,
    - Anomaly from model nowcast is within xSTD, assumed no model biases.
  - where climatology sources are
    - SST: Mean and STD from PATHFINDER version 5, Casey NODC/NOAA (global)
    - SSHA: Mean and STD from AVISO (global)
    - T&S: GDEM2
Current efforts (DA)

Method, continued

- **Algorithm**
  - 3D-VAR = 2D(along model layers)\(\times\)1D(vertical).
  - 2D assumes Gaussian isotropic, inhomogeneous covariance matrix. Use Jim Purser’s recursive filtering.
  - Ideally 1D vertical covariance matrix.
    - SST extended to model defined mixed layer.
    - SSH lifting/lowering main pycnocline.
    - S&T lifting/lowering above the last observed layer.
Current efforts (AXBT)

Real-Time Transmitted AXBT data for the 2011 season (by Navy, Sanabia & Black)

- ~120 AXBT transmitted in near real-time to GTS.
- Overall, good quality of data, except ...
Challenges

- QC, real-time acquisitioned data, occasionally produce false data. Example see below (for Irene 09L).
- Corresponding Salinity profiles required.

1. Problem as Measurements done in shallow waters. To rectify, we employ 1-min high-resolution topography*. in QC to filter false data.

2. For Salinity, use GDEM2 (or GDEM3), and AQUARIS remote-sensed SSS for update.

* Sandwell and Smith, 2009; http://topex.ucsd.edu/cgi-bin/get_data.cgi

Key: Hash denotes the sea floor.
Ocean modeling HyHWRF v2 (HyHWRF2)

- Eddy-resolving, 1/12-degree and 32-layers (better res. in the mixed layer) HYCOM.
- IC/BC from RTOFS-Global.
- Provide uniform ocean to E. Pac. and Atlantic – easier to configure.
- Data Assimilation.
- Re-locatable, practically anywhere in the world.
- ESMF (NUOPC) compliant – advantage for 3-way coupling.
Current efforts (ocean)

OCEAN IC for Irene (08L) 2011

Table 1. AXBT sample locations; sea surface temperature (SST) difference (°C), mixed layer depth (m) and Z26 (m) with simulation. Mixed layer too shallow (as known).

<table>
<thead>
<tr>
<th>AXBT</th>
<th>Lon</th>
<th>lat</th>
<th>dSST @z=x</th>
<th>MLD (m)</th>
<th>Z26 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sim</td>
<td>obs</td>
<td>sim</td>
<td>obs</td>
<td>sim</td>
</tr>
<tr>
<td>1</td>
<td>69.46</td>
<td>16.36</td>
<td>-0.5</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>69.37</td>
<td>17.43</td>
<td>-0.3</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>67.55</td>
<td>15.05</td>
<td>0.0</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>61.64</td>
<td>15.00</td>
<td>+/-0.2</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>61.00</td>
<td>15.44</td>
<td>+0.1</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>61.00</td>
<td>15.44</td>
<td>-0.2</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>60.21</td>
<td>15.99</td>
<td>-0.2</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>59.64</td>
<td>14.72</td>
<td>+0.2</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>59.55</td>
<td>15.52</td>
<td>+/-0.1</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>59.57</td>
<td>16.01</td>
<td>+0.1</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

St. 1 - Shallow MLD but good estimate below MLD

St. 7 - Good estimate of both MLD and below

St. 8 - Good MLD estimate but under-estimate below MLD
Future

HyHWRF version 2.

- Optimal Configuration.
- Parallel Real-Time Run for the 2012 season.
- Place the system in Western Pacific to study Typhoon prediction.

Data Assimilation.

- Complete implementation.
- Sensitivity study and Optimal sampling strategy via OSSE (Halliwell et al).
- Design to use Microwave Image (MI) SSS and SST.

Three-way coupling with WAVEWATCH III®.
Thank you!