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Uncertainty in ATD Models

Two Main Categories of ATD Problems

o “Acute” (short-term, episodic) problems involve
concentration excursions in both continuous and short-
term releases.

e “Chronic” (long-term) problems involve ensemble-
mean concentrations in continuous releases.
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Two Categories of Effluent Plumes

* The Instantaneous
plume, a), Is central to
acute problems; it is
the plume we see.

* The ensemble-mean
plume, b), is central to
chronic problems; it is

a virtual plume.



Y

GMU 2005
Uncertainty in ATD Models

w PENNSTATE

Categorizing ATD Models Is Not As Simple

« By framework: Eulerian, Lagrangian—but some use
both (e.g., LES with Lagrangian subgrid model).

« By averaging type: ensemble, spatial—but some use
both (e.g., mesoscale LES + SCIPUFF system).

It seems that all types of models have been used on
each type of problem.
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Typical Test Results for a Chronic Dispersion Model
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Interpretation and Implications

e The scatter is caused by (1) model errors and (2) measurement
“errors” due to insufficient averaging time. In principle either
can dominate.

* The predictions of a perfect chronic dispersion model would
agree well with atmospheric dispersion data only if the averaging
time were far larger than the standard one hour—which is
Impossible.

* Testing of chronic models 1s now done with Q — Q plots (in
which predictions and observations are unpaired in space and
time) rather than these scatter plots.
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A Q-Q Plot for the Kincaid Power Plant
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Modeling of Chronic Dispersion:
_essons Learned

 Itis generally not possible to test dispersion models definitively
In the atmosphere.

* The poor performance of the Gaussian-plume model in
convective turbulence was discovered through LES and fluid
modeling—and only then seen in specially designed atmospheric
observations.

e Both LES and fluid modeling have compelling advantages over
the atmosphere as testbeds for chronic dispersion models.
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Key Features of “Acute” Dispersion Problems

« The sensitive dependence of turbulent flow on initial conditions
Implies that a numerical calculation of an evolving effluent field
will diverge from the target field, however accurate the
Initialization, numerics, and physics, and however fine the
resolution.

« Anumerically predicted instantaneous plume is, at best, one
member of an ensemble of possible plumes—and so it should be
accompanied by a prediction of the statistics of the variability
over the ensemble.
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Key Features of “Acute” Dispersion Problems

 Initialization and data assimilation can help—but NWP
experience (e.g., in hurricane forecasting) shows that good
physics is still essential.

* The experience with testing chronic models suggests that
(barring a breakthrough) it will not be possible to generate
atmospheric data bases adequate for testing episodic models.
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Key Features of “Acute” Dispersion Problems

« The experience in engineering fluid mechanics is that turbulent-
flow models are not “predictive tools,” but rather are to be used
near their calibration conditions. Lumley called them “calibrated
surrogates for turbulence.”

* The experience in the convective-dispersion problem encourages
the use of computational (e.g., LES) and fluid-modeling data
bases in testing episodic models.
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Toward Reliable Modeling of
Regional Dispersion Episodes

* \We need certified, fast models that predict both the expected
outcome and the episode-to-episode variability.

 Certifying such models requires a large, high-quality data base
on dispersion episodes—which does not exist. \We cannot
generate such a data base solely from atmospheric observations,

but perhaps it could done by also using computations and fluid
modeling.
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A “Supermodel” For Episodic Dispersion?

e Can easily use 108 — 10° grid points; e.g., 10% x 103 x 102 in a 50
km x 50 km x 2.5 km domain. Subgrid-scale dispersion would
have to be carefully treated.

« Using it, observations, and fluid modeling we could generate a
“data base” on idealized regional dispersion episodes.

* This data base could be central in certifying the simpler, faster
models used to predict episodic concentration statistics.

« Could this accomplish for the regional-scale episodic problem
what LES has done for the chronic problem?
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Questions

It would seem essential to couple an episodic dispersion
“supermodel” with weather-forecasting operations—but how and
where in this model system should that coupling occur?

e Many of the components of this episodic modeling system
probably exist but are scattered through our large, diverse
community. Could we put them together?
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