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What is a model and its outputs?

• The model can be a single dispersion model (e.g., 
AERMOD or SCIPUFF) or a linked model system 
(e.g., linked with a met model such as WRF) 

• Most models predict the “ensemble mean” of a 
concentration averaged in time and/or space.  The 
averaging method must be prescribed (i.e. define the 
“output”).

• Some models (e.g., SCIPUFF) also predict the 
variance of the concentration, as well as an assumed 
pdf.  

• Uncertainty is due to model errors, instrument 
uncertainty, and random turbulent uncertainty
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Definition of Uncertainty

• The word “uncertainty” is best defined in 
statistical terms, e.g. the root mean square 
of the difference between model 
predictions and observations

• “Uncertainty” could be the pdf that is 
directly predicted by the model (e.g., 
SCIPUFF)

• Explain (in clear terms) to the decision-
maker.
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Rural PG, DP26, OLAD, & LROD Scatter 
Plots for JEM Dispersion Model
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Differences in scatter plots for pred vs obs for paired in 
space (left) and arc-max (right)

For HPAC/UDM for JU2003 field obs (three daytime 
IOPs)
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Rules of Thumb Based on 
Experience and Field Experiments
• Experts’ experiences suggest “factor of two” 

uncertainty in dispersion model predictions in best 
scenarios.  This was suggested by Frank Pasquill 
40 years ago and is still valid.

• Uncertainty increases to “factor of 5 or 10” for 
poorly defined scenarios or complex terrain and/or 
met conditions

• In-plume σC/C is about unity on the plume 
centerline for one-hour sampling times and is 
larger (factor of 5 to 10) on plume edges.

• The model uncertainty is no better than the 
uncertainty of its inputs.
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Sources of Model Uncertainty
• Natural stochastic (turbulent) variations
• Errors or non-representativeness of input data (e.g., wind 

speed observations by anemometers and by radiosondes)
• Physics assumptions in the model technical document are 

incorrect or inadequate or inappropriate for the application 
• Model parameters (e.g., scaling constants) are uncertain
• Coding/software errors
• The users guide is unclear about which input data to use and 

what switches to set, causing different users to get different 
results 

• The model is best suited (tuned) for certain simple scenarios 
where field data were available. “Gaps” in knowledge may 
exist for complex scenarios.
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Dependence on Scenario

Figure from NOAA/Hazmat – El Cajon train derailment
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Two Approaches to Predicting Uncertainty

• Internal - The uncertainty (i.e., the pdf of C) is 
internally predicted by the model (e.g., 
HPAC/SCIPUFF), which includes formulas for 
internal plume fluctuations and meandering.

• External - The model does not directly predict the 
uncertainty.  Instead the uncertainty is assumed to be 
caused by variations in inputs and model parameters 
and is estimated separately, through multiple model 
runs (ensembles), sensitivity studies, etc.
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Internal - HPAC/SCIPUFF accounts for 
small-scale concentration variations, 

plus uncertainties in observed or 
modeled meteorology

• SCIPUFF automatically solves for the small-
scale concentration variance and produces a PDF 
(e.g., 95 % range) of concentrations

• Large scale velocity variance and distance scale 
(Distance scale now has default of 100 km) for 
mesoscale wind variations

• SCIPUFF could ultimately use mesoscale met 
model variance and distance scale predictions

.
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External methods for estimating 
uncertainty, ordered by complexity

• Full Monte Carlo probabilistic method (allows all 
inputs and model parameters to be simultaneously 
varied and correlations determined, but takes a lot 
of time, and may produce too much uncertainty)

• Ensemble method (a subset of the MC method with 
a few model runs hopefully sufficient to capture 
“spread”)

• One-at-a-time (OAT) sensitivity studies (not good 
for nonlinear systems)



JEM IV&V Acceptance Criteria for Arc-Max 
Concentrations

• Based on the experience gained from many previous model 
evaluation exercises primarily using rural research-grade field 
data

• Urban criteria relaxed roughly by a factor of 2 compared to 
rural
– FB indicates relative systematic bias
– NMSE indicates relative random scatter 
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Rural Urban

|FB| < ~30% < ~67%

NMSE < ~3 < ~6

FAC2 > ~50% > ~30%
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Performance Measures for Four Rural (i.e., Non-
Urban) Field Data Sets

• GREEN means rural acceptance criteria are met, i.e., 
|FB| < 30%, NMSE < 3, and FAC2 > 50%

• RED means acceptance criteria are not met

FB NMSE FAC2

0.124 0.34 0.886
0.407 2.33 0.357
1.225 8.05 0.333
-0.570 1.27 0.727

OLAD
LROD

PG
DP26
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Ensemble Method for Estimating 
Uncertainties

• Widely used in weather forecasting; has had some 
tests with air quality models

• Make multiple (10 or 20 or 30) runs of the model 
system using different models, different initial 
fields, different model algorithms, etc.  The median 
of the predictions is the best “forecast”.

• It is hoped that the “spread” of the predictions is a 
measure of the uncertainty. This is checked with 
observations over some time period and domain.
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Monte Carlo Uncertainty Estimates

Assume range of variations of important inputs.  Apply 
Monte Carlo (MC) method by resampling indepen-
dently from all inputs for each MC run.  Do > 100 runs.  
Determine statistics (e.g., ranges, means, etc.)

Gives estimates of total uncertainty in model outputs 
due to uncertainties in inputs and in model 
parameters.  Gives estimates of correlations between 
variations in model outputs and variations in individual 
model inputs, allowing the inputs to be identified where 
uncertainties have the largest effect on the model 
output uncertainties.
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Dispersion Model Inputs Varied in 
MC Houston Study with AERMOD

• Wind speed u and v components ( 1 m/s)
• Cloud cover ( 0.2)
• Daytime mixing depth ( 20 %)
• dT/dz ( factor of two)
• σy and σz ( factor of two)
• Surface roughness (AERMOD only) ( factor of three)
• Bowen ratio (AERMOD only) ( factor of two)
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Benzene Concentrations for Maximum Receptors

AERMOD                              ISCST3                               ISCST3-U
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Communication of Uncertainty to 
Decision-Makers

• Must involve decision-makers in the 
process (ask them what they need)

• Must answer specific questions
• Must be clear and succinct (on level of 30 

second blurb on CNN)
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