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Chapter 1
 

Introduction and Motivation
 

1.1 Wind Energy Growth 

Wind energy is growing rapidly in the United States. From 2006 to 2009, wind en­
ergy consumption increased from 264 MBtu to 924 MBtu. In 2009 alone, the capacity 
for wind generated electricity increased 3.6 GW (Energy Information Administration 
2011). Typical wind turbine consists of three major components: the tower, the na­
celle, and the blades. Figure 1.1 shows such a wind turbine in a wind farm. After 
the initial cost to install the wind turbines and the necessary transmission infrastruc­
ture, only routine maintenance is required throughout the lifetime of a turbine. This 
reduces the long-term cost of wind energy. Considering the uncertain supply and the 
increasing price of fossil fuels, wind energy is being pushed as a premier source of 
clean energy for the future. A report published by the Department of Energy in 2008 
detailed a scenario where 20% of the Nation’s energy will be generated through wind 
power by 2030 (Department of Energy 2008). The projected growth of wind power 
required to achieve such scenario is shown in Figure 1.2. While there are many posi­
tive outcomes from the growth of wind energy, the negative effects of the expansion 
of wind farms cannot be ignored. One such negative impact is the interference caused 
by the wind turbines on radar systems, especially weather radars. Such interference 
is generally referred to as wind turbine clutter (WTC). As wind turbines grow in size 
and new wind farms are constructed, the interference problem is only going to get 
worse. 

1.2 Effects of Wind Turbines on Radar 

The United States has a network of weather radars that are constantly collecting 
information about the atmosphere. The radar transmit a pulse of electromagnetic 
energy and measures the energy reflected from the hydrometeors in the atmosphere. 
Based on the reflected energy, weather radar estimates three meteorological variables, 
also known as moments, that describes the conditions of the atmosphere. The three 
moments are called reflectivity, Doppler velocity, and spectrum width. Reflectivity is 
based on the strength of the reflected energy and it describes the general strength of a 
storm and measures the amount of hydrometeors present. Doppler velocity measure 
the mean motion of the hydrometeors in the radial direction relative to the radar. 
Spectrum width describes the turbulence of the hydrometeors inside the volume of 
space under observation, which is called resolution volume (Doviak and Zrnić 1993). 
Other advanced algorithms uses these moments as input to perform tasks such as 
estimate precipitation and detect severe weathers such as tornados. 
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Figure 1.1: Typical three-blade wind turbine consisting of a tower, nacelle, and three 
blades. The blades are constructed of composite materials with lightning cables span­
ning the length of each blade and the nacelle houses the generator and the equipment 
that controls the turbine 

(a) Growth through 2006 (b) Required Growth 

Figure 1.2: (a) Cumulative installed capacity of wind power in the United States. 
(b) Required growth to reach the goal of 20% wind power by 2030. (Department of 
Energy 2008) 
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When the weather radar is observing the atmosphere, the energy reflected from 
non-hydrometeors generate unwanted clutter signals. When a resolution volume con­
tains both hydrometeors and clutter targets, the weather signal and the unwanted 
clutter signal are coherently added adversely affecting the three moments. The most 
common clutter signal is ground clutter, which is generated when energy is reflected 
from non-moving targets such as ground, buildings, and trees. Wind turbines with 
its moving blades generate a much more complex clutter signal. 

It is well documented that wind farms cause problems for single target radar 
systems such as air traffic control radars (ATC). The ground clutter caused by the 
tower reduces the probability of detection for an ATC radar (Tietjen 2005) and the 
automatic tracking algorithms can miss a detection or generate false alarms on the 
location of an aircraft while it flies over a wind farm (Perry and Biss 2007). The 
problem for weather radar systems is more complicated. 

The return signals from WTC are very similar to weather signals and are difficult 
to distinguish on a plan position indicator (PPI) plot. One example of such confusion 
is illustrated in Figure 1.3. Experience human operators can identify the presence 
of WTC, but it is much more difficult for automatic algorithms to identify such 
contamination. If not mitigated, WTC will bias the three moments and automatic 
algorithms such as quantitative precipitation estimation that uses these moments 
will be biases as well (Vogt et al. 2007). Tornado detection algorithms also have 
the potential to generate false detections and cause forecasting problems (Vogt et al. 
2007). The traditional approach to mitigate the bias caused by clutter is to apply 
a frequency domain filter to remove the clutter signal before moment estimation. 
However, because the moving blades of the wind turbine, such approach is ineffective 
at removing WTC while preserving the weather signal simultaneously. 

Figure 1.3: Similar radar returns of storms and WTC on a PPI plot. Image courtesy 
of the Radar Operation Center, Application Branch. 
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1.3 Motivation for Proposed Mitigation Algorithm
 

Since traditional filtering approaches are ineffective at mitigating WTC, a new 
algorithm needs to be developed before WTC becomes a wide spread problem for the 
national weather radar network. Detailed studies of WTC have been conducted to 
understand WTC signatures (Isom et al. 2009), but have focused on using a radar in 
a spotlight mode, where the beam is not rotated. Such modes are not operational. 

This report outlines a unique algorithm based on mimicking human 
perception of spatial continuity in weather radar images. In other words, the 
proposed algorithm uses the inherent range continuity in the spectral characteristics 
of a weather field to assist in determining the spectral coefficients to use for moment 
estimation. By doing so, it will be shown that biases can be greatly reduced in both 
stratiform and convective precipitation. As important is the fact that the algorithm 
has the potential for realtime implementation given that the processing is conducted 
along each radial independently. Furthermore, application to phased array radar 
may even have more potential since no beam smearing effects are present with such 
systems. 
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Chapter 2
 

Range-Doppler Signal Processing
 

The range-Doppler spectrum shows key differences between weather signals and 
WTC signals. Two methods to exploit the spatial and spectral differences are pre­
sented in this chapter to mitigate WTC contamination. After a brief review of the 
definition of the range-Doppler spectrum, the advantages of using the range-Doppler 
spectrum to mitigate WTC are discussed. The first mitigation method is based on de­
tecting the discontinuities, or image edges, in the range-Doppler spectrum caused by 
the WTC, while the second mitigation method is based on exploiting the continuity 
of weather signals. 

2.1 Definition of Range-Doppler Spectrum 

The range-Doppler spectrum, denoted by S(v, r), is a plot of Doppler spectra 
for a set of contiguous range gates as a two-dimensional image, where the x-axis is 
Doppler velocity, the y-axis is range, and the color of each pixel represents the power 
in dB units at that frequency bin and range gate. The range-Doppler concept has 
been used in wind profiling communities (Wilfong et al. 1993; Merrit 1995) and the 
recently developed NIMA algorithm (Morse et al. 2002) also takes advantage of the 
range-Doppler spectrum to mitigate contamination for a wind profiling radar. In this 
work, the range gates in a range-Doppler spectrum are labeled by discrete indicies 
n rather than the range r. Since the actual distance between the range gates and 
the radar is not used by any of the algorithms in this chapter, the discrete indexing 
makes it more convenient to explain the algorithms. The discrete index is related to 
the range by 

r(n) = nΔr + rmin (2.1) 

where r(n) is the range of the nth gate, Δr is the range resolution of the radar, and 
rmin is the range of the first gate in the range-Doppler spectrum. 

Examples of Range-Doppler spectra for stratiform precipitation, convective storm, 
and clear air conditions are shown next. In the stratiform precipitation case, the 
weather spectra from different range gates have similar power, velocity, and spectrum 
width. Figure 2.1 is a simulated stratiform precipitation range-Doppler spectrum 
based on data collected by WSR-88D KTLX, located in Oklahoma City, OK, on 
November 15, 2010. The simulation procedure is explained in Section 3.1.1. In this 
spectrum, the weather signal is present in each range gate shown and has velocities 
centered around 7 m s−1 . In contrast to stratiform precipitation, convective storms 
can show much more variability in the spectral moments as a function of range. 
Figure 2.2 shows a simulated convective storm range-Doppler spectrum based on 
observations by KTLX on May 1, 2009. The power of the weather signal increases 
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Figure 2.1: Range-Doppler spectrum of stratiform precipitation. There is little ve­
locity shear in range. The signal power and spectrum width have little variation in 
range. 
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Figure 2.2: Range-Doppler spectrum of a convective storm. There is large velocity 
shear and signal power variation in range. The spectrum width has less variations in 
range. 
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between range gate 1 and 60 and then decreases; the velocity of the weather signal 
starts around zero and decreases linearly to around -20 m s−1 . The spectrum width 
has slightly less variation than the other two moments, but there are large differences 
in spectrum width between range gates that are farther apart. For example, spectrum 
width estimate for gate 75 is larger than the spectrum width estimate for gate 45 by 
4 ms−1 . Aliasing occurs between gates 64 and 86. Figure 2.3 is a simulated clear 

Figure 2.3: Range-Doppler spectrum of clear air. The return signal power is weak 
compared to the background noise power. 

air range-Doppler spectrum based on observations by KTLX on November 15, 2010. 
The range-Doppler spectrum is similar to the stratiform spectrum shown in Figure 2.1 
except the signal powers are significantly lower and the velocities are centered around 
-18 ms−1 . 

Observing the three examples of weather range-Doppler spectra, the common 
feature is that weather signals from one range gate are similar to weather signals in 
neighboring range gates. Both WTC mitigation methods proposed in this chapter use 
this key feature to help identify the spectrum of the weather signal in a contaminated 
gate. 
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2.2 Advantages of Range-Doppler Processing 

There are several advantages of using the range-Doppler spectrum to mitigate 
WTC contamination. The first advantage is that the dwell time in operational radars 
is often long enough to collect signal samples required to estimate the range-Doppler 
spectrum with sufficient precision. In contrast, the gate-by-gate methods require 
much longer dwell times to collect enough samples to observe the non-stationary 
features of the WTC. Also, estimation of the range-Doppler spectrum only requires 
time-series data one dwell. Thus, an operational WTC mitigation algorithm based 
on the range-Doppler spectrum would function under current operational settings of 
the WSR-88D, while gate-by-gate methods would certainly require modifications to 
the operational scanning strategies. 

The second advantage of using the range-Doppler spectrum is that the mitiga­
tion methods follow the steps a human expert would use to estimate the spectral 
moments for the contaminated range gates. Examining a range-Doppler spectrum 
with weather and WTC contamination, an expert can use the spectrum of neighbor­
ing non-contaminated gates to identify the spectral coefficients in the contaminated 
gates that might be related to the weather signal. Figure 2.4 shows a contaminated 
range-Doppler spectrum. Range gate 43 to 70 are contaminated, and it is difficult 
to locate the weather signal in the contaminated gates if no other information is 
available. However, by observing the trend in the weather signal in range gates 30 
to 42 and 71 to 82, an expert can make an estimate of the frequency content of the 
weather signal in the contaminated gates. A possible estimated “weather window” is 
overlaid on the contaminated spectrum shown in Figure 2.4. The weather window, 
represented by the horizontal bars, indicates the spectral coefficients that are likely 
to contain most of the weather signal. Assuming the weather signal is continuous 
in range, since the weather window in the non-contaminated gates includes the ma­
jority of the significant spectral coefficients of the weather signal, it is likely that 
significant weather spectral coefficients in the contaminated gates are included in the 
weather window as well. Thus, the spectral moments of the weather signal in the 
contaminated gates can be estimated using only the spectral coefficients included in 
the weather window, which may significantly reduce the biases caused by the WTC. 

2.3 The Edge Detection Method 

The edge detection method (EDM) is the first approach that uses the range-
Doppler spectrum to mitigate WTC contamination. It focuses on the sharp tran­
sitions in the range dimension of the range-Doppler spectrum caused by the WTC 
contamination. By modeling such transitions as step edges, a method is developed 
to detect and remove the frequency bins containing only WTC power. Since only 
the first range gate in a block of gates contaminated by WTC can create an edge, 
the method is used recursively to mitigate one contaminated gate at a time until all 
contaminated gates are processed.The theory and advantages of the edge detection 
method are discussed in Section 2.3.1, a detailed explanation of the steps in the edge 
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Figure 2.4: Contaminated range-Doppler spectrum and the estimated weather win­
dow. The weather window attempts to capture the spectral coefficients that are most 
likely related to the weather signal in the contaminated gates. 
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detection method is presented in Section 2.3.2, and the limitations of the method are 
described in Section 2.3.3. 

2.3.1 Motivation for EDM 

The EDM focus on the transitions from non-contaminated gates to contaminated 
gates to estimate the weather window. In a WTC-contaminated range-Doppler spec­
trum, there are three types of frequency bins depending on the signal content of 
that bin: weather-signal bins, noise bins, and WTC bins. Weather-signal bins are 
the frequency bins containing power from the weather signal only or bins containing 
power from weather signal and WTC signal; noise bins are bins containing power 
from noise only; and WTC bins are the frequency bins containing power from WTC 
signal only. Observing the contaminated range-Doppler spectrum in Figure 2.4, a 
key characteristic of WTC contamination is the widespread of high power over the 
majority of frequency bins. As a result, there is a jump in power level from noise 
bins to WTC bins. On the contrary, power changes from WTC bins to WTC bin, 
weather-signal bins to weather-signal bins, and noise bins to noise bins are much 
smaller. The large power changes from noise bins to WTC bins allow the transition 
from a non-contaminated gate to a contaminated gate to be modeled as a step edge. 
A mitigation technique based on edge detection can be developed to identify the 
weather window because the spectral coefficients inside the weather window should 
have weather to weather transition instead of noise to WTC transition. 

A major advantage of the EDM is that it does not require prior knowledge of 
which gates are contaminated by WTC. The algorithm can perform both detection 
and mitigation of WTC contamination. However, for this mitigation technique to 
perform well, three key assumptions must hold. The first assumption is that the 
weather signal must be continuous in range; in other words, the weather signal must 
have similar velocity and spectrum width from gate to gate. The second assumption 
is that the transition from non-contaminated gate to contaminated gate must fit 
the step edge model. The last assumption is that the clutter-to-signal ratio (CSR) 
must be small to ensure the power level change from weather-signal bins in a non-
contaminated gate to weather-signal bins in a contaminated gate is small. While the 
first assumption is common to all range-Doppler spectrum-based WTC mitigation 
methods, the second and third assumptions are unique to the edge detection method 
and place a significant constraint on the applicability of the method. Section 2.3.3 
will discuss the limitations of the edge detection method in detail. 

2.3.2 EDM Algorithm Description 

There are four inputs to the edge detection method: the contaminated range-
Doppler spectrum, the aliasing velocity, the data window used to estimate the spec­
trum, and the noise power level. Following the flow chart for the edge detection 
method shown in Figure 2.5, the first step of the algorithm is to form a block of four 
range gates as a “processing unit”. The processing unit consists of a reference gate, 
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Read Input 
Parameters 

Contaminated? 
Yes No 

Generate 
Processing Unit 

Filter Each 
Doppler Spectrum 

 

Detect Local  
Minimum  

Count Horizontally  
Connected Bins 

Construct Gaussian 
Model 

Estimate 
Spectral Moments 

Update Reference  
Gate 

Calculate  
Power Ratio 

Figure 2.5: Flow chart of the EDM. The algorithm iteratively remove WTC contam­
ination one gate at a time by detecting the noise bin to WTC bin transitions in the 
range-Doppler spectrum. 
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a testing gate, the gate immediately before the reference gate, and the gate imme­
diately after the testing gate. An example processing unit is shown in Figure 2.6.
 
In this example, the first spectrum from the bottom is from the gate before the ref-


Figure 2.6: Example processing unit used in the EDM. This processing units shows 
the transition from a non-contaminated reference gate (second spectrum from the 
bottom) to a contaminated testing gate (third spectrum from the bottom). 

erence gate, the second spectrum is from the reference gate, the third spectrum is 
from the testing gate, and the fourth spectrum is from the gate after the testing gate. 
After generating the processing unit, the power ratio, PR, of each frequency bin is 
calculated following gate pairs: the reference gate and the gate before it, the testing 
gate and the reference gate, the gate after the testing gate and the testing gate. The 
power ratio at frequency bin v between two range gates with discrete indices no and 
n is defined as 

10 log10(S(v, n))PR(v, no, n) = (2.2)
10 log10(S(v, no)) 

where S(v, n) is the Doppler spectrum for the nth range gate in the range-Doppler 
spectrum. In the processing unit, there are four types of transitions: noise bin to 
noise bin, weather-signal bin to weather-signal bin, WTC bin to WTC bin and noise 
bin to WTC bin. The first three types of transitions have small power changes and 
produce power ratios close to 1, while the noise to WTC transitions have a large 
power change and produce power ratios much smaller than 1. A five-point average 
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in frequency is applied to the Doppler spectra before calculating the power ratio to 
reduce fluctuations of the spectral coefficients due to the variance of the periodogram 
spectral estimator. The power ratios for the example processing unit are shown in 
Figure 2.7. The bottom row of Figure 2.7 is the power ratio between the reference 

Figure 2.7: Power ratio of the processing unit shown in Figure 2.6. The x-axis 
is Doppler velocity and the color represents the power ratio in each frequency bin 
between two consecutive rows in the processing unit. 

gate and the gate before it. Since the transitions between those two gates are either 
noise to noise or weather to weather, the expected power ratio for each frequency bin 
is 1. The second row of Figure 2.7 is the power ratio between the testing gate and 
the reference gate. According to Equation (2.2), a step up transition from noise to 
WTC will produce power ratio much lower than 1. The top row of Figure 2.7 is the 
power ratio between the testing gate and the gate after it. Since the gate after the 
testing gate has lower power in most frequency bins in the example processing unit, 
the expected power ratios for those bins are greater than 1. The power ratios shown 
in Figure 2.7 match the expected power ratios. Since the exact value of power ratio 
depends on the WTC power and noise power, it is difficult to set a hard threshold 
on the power ratio to detect which bins are WTC bins. A better approach is to use 
the fact that noise to WTC transitions generate extreme values in power ratio. Since 
the edge detection method is applied from the closer range gates to the farther range 
gates, the only type of noise to WTC transitions expected are step up edges which 
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produce power ratios that are local minima. The local minima detection result is
 
shown in Figure 2.8. The middle row of Figure 2.8 is the detection result on the
 

Figure 2.8: Local minimum detection result on the power ratio shown in Figure 2.7. 
The light green bins in row 2 indicate which bin in the testing gate are WTC bins. 
The detections in row 1 and 3 are disregarded by the algorithm because they do not 
correspond to WTC bins. 

testing gate in the example processing unit shown in Figure 2.6 and the light green 
bins correspond to the WTC bins in the testing gate. The bins in the top and bottom 
row that are detected as local minima because the power ratios in those frequency 
bins are smaller than the power ratio in the same frequency bins of the middle row. 
Since only the local minima detection on power ratios between the reference gate and 
the testing gate is of interest, the detections in the top and bottom row of Figure 2.8 
are disregarded by the EDM. 

Two potential sources of false detections must be taken into consideration: the 
fluctuations in the power ratio and the transition from noise to weather. The false 
detections due to power ratio fluctuations are removed by requiring the detected 
minima to have a power ratio lower than a conservative threshold. Since WTC 
signals have much larger spectrum width than normal weather signals, a true WTC-
contaminated gate can be expected to have a higher number of horizontally connected 
bins that are labeled as potential WTC bins than a false detection case resulting from 
noise to weather transitions. Therefore, a method to remove false detections from 
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noise to weather transitions is to apply a threshold on the length of the detected 
edge, which is defined as the number of horizontally connected bins that are labeled 
as potential WTC bins. If the testing gate in the processing unit has more than 35% 
of its bins labeled as WTC bin, it will be considered as contaminated. In the example 
processing unit, there are no false detection and the result after applying the power 
ratio threshold and length threshold is the same as the detection shown in Figure 2.8. 
The testing gate in the example is detected as contaminated. 

If the testing gate is detected as contaminated, a Gaussian model for the weather 
signal is constructed using the signal power and velocity estimated using the non-
WTC bins from the contaminated gate. The spectrum width used to build the model 
is estimated from the reference gate. The spectral moments are then estimated using 
the model spectrum. If the testing gate is labeled as non-contaminated, it is desig­
nated as the new reference gate, otherwise the reference gate stays the same. The 
procedure is then repeated for a new processing unit containing the reference gate 
and a testing gate shifted in range by one gate. The whole mitigation process is 
terminated after each range gate is processed as the testing gate. Figure 2.9 shows 

Figure 2.9: The weather spectrum (left), contaminated spectrum (middle left), WTC 
bins (middle right), and the spectrum after applying EDM (right). Most of the WTC 
bins in the contaminated spectrum are detected as shown in the WTC bins plot. 

an example mitigation result using this method. The left panel shows the uncon­
taminated weather spectrum; the middle left panel shows the WTC-contaminated 
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spectrum; the middle right panel shows the frequency bins labeled as WTC bins; and 
the right panel shows the spectrum after applying EDM. Comparisons between the 
spectrum after filtering and the uncontaminated weather spectrum shows that the 
EDM significantly improved the radial velocity estimates in the contaminated gates 
while preserving the original estimates in the the non-contaminated gates. Visual 
inspection of the spectrum after EDM shows that the spectrum width and power 
biases in the contaminated gates are reduced as well. 

2.3.3 Limitations of EDM 

The edge detection method also has several limitations that constrain its appli­
cability and performance under certain conditions. One major limitation is the need 
for a reference gate. To satisfy the weather continuity assumption, it is desirable to 
use a non-contaminated gate that is closest to the contaminated gate as the reference 
gate. This implies the reference gate must be updated after each iteration of the algo­
rithm depending on the detection result of the testing gate. However, if the algorithm 
missdetects a contaminated gate, the reference gate will be updated to a contami­
nated gate, and no mitigation will be done on the remaining contaminated gates 
because there is no sharp transition from contaminated gate to contaminated gate. 
The iterative nature of the algorithm dictates that any error will be propagated to 
the next iteration and potentially resulting in complete failure of the algorithm. The 
iterative approach also makes the algorithm more computationally complex, which is 
undesirable in an operational setting. 

The difficulty in maintaining a good reference gate is not the only limitation 
on the edge detection method, the strong dependence on the assumptions stated in 
Section 2.3.1 also severely limits the cases where the algorithm is applicable. There 
are cases of WTC contamination that do not satisfy the step edge requirement. An 
example of such contamination and the mitigation result is shown in Figure 2.10. 
In this example, the WTC contaminations in range gates 42 to 46 are successfully 
removed by the edge detection method, but the contaminations in range gates 50 to 
60 and 64 to 70 is not mitigated by the method. The algorithm failed because the 
power of each contaminated gate is stronger than the contaminated gate before it, 
resulting in a ramp edge instead of a step edge. 

The algorithm also performs poorly when the small CSR assumption is violated, 
as shown in Figure 2.11. In this example, the transition from bins containing only 
weather signal to bins containing weather and WTC signal also satisfy the step edge 
model. This results in all bins of the contaminated gate being labeled as WTC bins 
and no weather window is produced, which leads to the weather information in the 
contaminated gates to be completely removed. The limited applicability of the EDM 
and its potential for catastrophic errors make the technique an ineffective solution 
to the WTC problem. Another algorithm that takes advantage of the range-Doppler 
spectrum but without some of the limiting assumptions of the EDM is presented next. 
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Figure 2.10: Example of contaminated spectrum with both step and ramp noise-to-
WTC transitions and corresponding filtered spectrum (right). Gates 42 to 46 have 
step edge noise-to-WTC transitions while gates 50 to 60 and 64 to 70 have ramp 
noise-to-WTC transitions. 
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Figure 2.11: Example of contaminated spectrum with high CSR and corresponding 
filtered spectrum (right). Weather-signal bins in the contaminated range gates are 
detected as WTC bins in range gates 51 to 61resulting in weather signal being lost 
for those range gates. 
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2.4 Range-Doppler Regression 

To address the limitations of the edge detection method presented in Section 2.3, 
a new method using the range-Doppler spectrum is developed. The range-Doppler 
regression (RDR) method does not focus on the discontinuities caused by the WTC in 
range, instead it relies on the continuity of weather signals in range. The RDR method 
still follows the steps a human expert would take to estimate the spectral moments 
for the contaminated gates described in Section 2.2. This section will discuss the 
advantages and assumptions of the RDR method, present a detailed description of 
the algorithm, and describe the limitations of the RDR method. 

2.4.1 Motivation for RDR Algorithm 

Since the EDM developed in Section 2.3 did not produce satisfactory results for a 
number of different cases, a more effective mitigation technique is developed to take 
advantage of the range-Doppler spectrum. Instead of comparing a non-contaminated 
gate and a contaminated gate bin by bin to determine the proper location of the 
weather window, low-order polynomial fits using velocity and spectrum width infor­
mation from neighboring non-contaminated gates are used to estimate the weather 
window. The first advantage the RDR algorithm has over the EDM is that the poly­
nomial fits can follow the local trends in velocity and spectrum width of the weather 
signals, which allows for the weather window to shift in frequency from range gate 
to range gate. Therefore, the RDR method can better handle weather conditions 
with velocity shear. The second advantage of the RDR method is that the need of 
a reference gate is eliminated because each neighboring non-contaminated gate will 
contribute to the fits. The third advantage of the RDR method is that the weather 
window estimation process is independent of the CSR. Like the EDM, the RDR al­
gorithm does not affect the non-contaminated gates. 

Besides the weather continuity assumption that is common to both range-Doppler 
spectrum-based mitigation methods, the RDR method also requires approximate 
knowledge about which range gates are contaminated by WTC. Without such knowl­
edge, the velocity and spectrum width from contaminated gates could be used to per­
form the fits, which could significantly reduce the accuracy of the estimated weather 
window. However, there are several methods to generate the required WTC contam­
ination information. An automatic WTC detection algorithm was recently developed 
by Hood et al. (2010) that can be used to detect the location of WTC before apply­
ing the RDR method. A conservative estimation of contaminated gates based on the 
known locations of the wind turbines can also be used because the biases introduced 
by the RDR algorithm in non-contaminated gates that are treated as contaminated 
are small. As a result, requiring approximate knowledge of contaminated gates does 
not place a significant constraint on the applicability of the RDR mitigation method. 
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2.4.2 RDR Algorithm Description 

The inputs to the RDR method are the contaminated range-Doppler spectrum, 
the approximate location of the contaminated gates, the aliasing velocity, the data 
window used to estimate the spectrum, and the noise power level. Following the flow 
chart of the algorithm shown in Figure 2.12, the first step in the RDR method is to 

Read Input 
Parameters 

CSRest1<A 
CSRest2<B Yes No 

Calculate Fit  
Weighting 

Dealiase  
Velocity 

Fit Velocity and  
Spectrum Width 

Determine Weather 
Window 

Fit Signal Power  
and Estimate CSR 

Use Weather Window  
Power as Power  

Estimate 

Estimate Velocity  
and Spectrum  

Width 

Use Fitted Power as   
Power Estimate 

Enough  
Data Point? Yes No 

Flag Case as Cannot 
Be Processed 

Output Mitigated  
Spectral Moments 

Figure 2.12: The flow chart for the RDR algorithm. The RDR algorithm uses low 
order polynomial fits to determine the weather window and estimates the spectral 
moments based on the weather window. The weather signal power estimates are then 
adjusted based on estimated CSR. 

estimate the spectral moments using the contaminated range-Doppler spectrum and 
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dealias the velocities from the non-contaminated gates using a seven point running 
window dealiasing algorithm. For each range gate, the velocity is dealiased based on 
the following rule: 

vd(n) = 

⎧ ⎪⎨ ⎪⎩
 

v(n) + 2va v(n) − vmed < −va 

v(n) − 2va v(n) − vmed > va (2.3) 

v(n) otherwise 

where v(n) is the velocity estimate at the nth range gate, vd(n) is the dealiased velocity, 
and vmed is the median velocity of the seven range gates in the running window. If 
velocities from contaminated gates would be included in the running window, the 
velocities from the non-contaminated gates immediately after the contaminated gates 
are used instead. After velocity dealiasing, low-order polynomial fits for velocity and 
spectrum width are done using weighted velocity and spectrum width data from the 
non-contaminated gates. Since the velocity and spectrum width fits will be used to 
determine the weather window, a low-order fit is enough to capture the local trends 
in the weather signal. An example of the velocity and spectrum width fits is shown 
in Figure 2.13. The requirement of knowing which gates are contaminated is evident 
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Figure 2.13: Velocity fit (left) and spectrum width fit (right). The blue curves are the 
contaminated velocity and spectrum width estimates, the red curves are the fitted 
velocity and spectrum width using the non-contaminated velocity and spectrum width 
estimates indicated by the black *. 
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since velocities and spectrum widths from the contaminated gates are wildly different 
from the neighboring non-contaminated gates and cannot be used to generate the fits. 
Both fits shown in Figure 2.13 are second order. 

The weights used in the fit are the multiplication of two separate weights based 
on signal-to-noise ratio (SNR) and proximity to the contaminated gates. The SNR 
weight is calculated using a binary threshold as follows:  

1 SNR(n) > TSNR 
WSNR(n) = (2.4)

0 SNR(n) ≤ TSNR 

where WSNR(n) is the SNR weight at the nth range gate, SNR(n) is the SNR at the 
nth range gate, and TSNR is the SNR threshold. Since only range gates with significant 
weather return will receive nonzero SNR weight, the SNR weight prevents velocity 
and spectrum width from range gate with only noise signal to contribute to the fit. 
The second weight is based on the proximity of the range gate to the contaminated 
range gates. It is given by      

1 1 + cos π d 0 ≤ d ≤ Tprox 2 Tprox Wprox(d) = (2.5) 
0 otherwise 

where d is the distance between the current range gate and the closest contaminated 
range gate measured in number of range gates, Wprox(d) is the proximity weight 
for distance d, and Tprox is the threshold after which the proximity weight will be 
zero. The proximity weight allows range gates that are closer to the contaminated 
gate to contribute more to the fitting than range gates that are farther away. The 
unequal contribution makes the fitting follow the local weather trend and reduces the 
polynomial order needed to accurately estimate the location of the weather window. 
Figure 2.14 shows the weights used to produce the fits shown in Figure 2.13. The SNR 
weight on the left panel of Figure 2.14 were calculated using TSNR = −2 dB and it is 1 
for all non-contaminated gates because this example was produced from a stratiform 
precipitation condition and there were no gates with non-significant weather returns. 
The proximity weights shown in the middle panel of Figure 2.14 were calculated using 
Tprox = 13. The optimum thresholds for the weights are determined in Section 3.2.1. 

Once the fitting is completed, the resulting polynomial coefficients are used to 
estimate the center and width of the weather window for the contaminated gates. 
The two limits defining the weather window for a range gate are given by 

v̂(n) − Kŵ(n) (2.6) 

and 
v̂(n) + Kŵ(n) (2.7) 

where v̂(n) and ŵ(n) are the fitted velocity and spectrum width at the nth range 
gate, respectively, and K is the weather window width factor. Figure 2.15 shows the 
weather window determined using the fitting in Figure 2.13 and Equation (2.6) and 
(2.7). Assuming the weather signal is continuous in range, the estimated weather win­
dow in the contaminated gates should include most of the weather spectral coefficients 
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Figure 2.14: SNR weight (left), proximity weight (middle), and the overall weight 
(right). For any range gate, the SNR weight is determined using a binary threshold, 
the proximity weight is determined using a cosine roll off given by Equation (2.5), and 
the overall weight is the multiplication of the SNR weight and the proximity weight. 
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Figure 2.15: Contaminated range-Doppler spectrum and the estimated weather win­
dow. The horizontal bars indicate the estimated weather windows. 
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since the estimated weather window does a good job capturing the weather spectral 
coefficients in the non-contaminated gates neighboring the contaminated gates. 

After determining the weather window, spectral moments are estimated using only 
the spectral coefficients inside the weather window. For velocity and spectrum width, 
the new estimates have significantly less bias than the contaminated spectrum as will 
be shown in Chapter 3. However, signal power estimates are still biased because 
each spectral coefficient inside the weather window also contains WTC power. The 
degree of power bias depends on the CSR. For low CSR, the WTC power contained 
in each spectral coefficient is small, and the power estimates produced using the 
weather window have a small bias. For high CSR, the WTC power contained in the 
spectral coefficients is much larger than the weather signal power, and the power 
estimates produced by the weather window still have unacceptable biases. Ideally, a 
threshold on CSR can be set such that any cases with lower CSR will use the weather 
window estimates, and other cases will use power estimates from a weighted low-
order polynomial fit using neighboring non-contaminated signal power estimates. In 
practice, the true CSR for each contaminated gate is unknown and simple thresholding 
is ineffective. 

To compensate for the lack of knowledge about the true CSR, two estimators for 
CSR are developed:   

S(n)
CSRest1(n) = 10 log10 (2.8)

Ŝ(n)

and   
S(n) − S̃(n)

CSRest2(n) = 10 log10 (2.9)
S̃(n)

where for the nth range gate, S(n) is the total power estimated using the contaminated 
˜ ˆspectrum, S(n) is the power estimated using the weather window, and S(n) is the 

power estimated from a weighted polynomial fit. For the high CSR cases, CSRest1 

should produce good estimates because the WTC signal overpowers the weather signal 
and S(n) is a good estimate of the clutter power, while Ŝ(n) is the best estimate for 
weather power. CSRest2 should gives better estimates for the low CSR cases because 
in this situation the best estimator for weather signal power is S̃(n), and the clutter 
power is the total contaminated power minus the weather signal power. Figure 2.16 
plots the estimated CSR against the true CSR for both estimators using simulated 
contaminations. The left panel shows the performance of the CSR estimators for 
stratiform precipitation and the right panel shows the performance for convective 
storm. In both cases, CSRest1 underestimates the true CSR for cases with true CSR 
greater than 0 dB because the true CSRs are calculated before applying the GCF 
and CSR estimates are made after applying the GCF. For cases with true CSR less 
than 0 dB, CSRest1 asymptotically approaches 0 dB because S(n) is dominated by 
the weather signal power at low CSRs. For CSRest2, it saturates to a fixed number 
that is dependent on the window width factor when the true CSR is high. The error 
bars indicates the standard deviation associated with each estimator for a fixed CSR. 
CSRest2 have slightly larger standard deviation for convective storm because it is 
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Figure 2.16: Estimated CSRs plotted against the true CSRs for stratiform precip­
itation (left) and convective storm (right). The error bars indicate the standard 
deviation of the estimations. Because of the large standard deviation associated with 
each estimator, both estimators are needed to determine whether the power estimate 
from the weather window or the power estimate from a fit should be used as the 
weather signal power estimate. 

more difficult to accurately estimate the weather window due to the typical velocity 
shear. 

Using only CSRest1 to determine how to estimate the weather signal power is 
unsatisfactory because there are many cases where the true CSR is low but the esti­
mated CSR is high. Similarly, using only CSRest2 also produces unsatisfactory results 
because there are many cases where the true CSR is high but the estimated CSR is 
low. The best solution is to threshold both CSRs independently and use the following 
rule to determine whether S̃(n) or Ŝ(n) should be the weather signal power estimates: 

S̃(n) CSRest1 < A and CSRest2 < B 
Weather Signal Power Estimate = (2.10)

Ŝ(n) otherwise 

where A is the threshold for CSRest1 and B is the threshold for CSRest2. To catch the 
cases where there is no contamination or extremely weak contamination, no mitigation 
will be performed if CSRest2 for a range gate is below −10 dB. 

The last step in the algorithm is to flag the cases where there are not enough 
non-contaminated data points to perform the fitting. A case is flagged if there are 
fewer than three non-contaminated gates with weather signal either before or after 
the contaminated gates. Figure 2.17 shows the mitigation result for a stratiform 
precipitation case. The three panels show the non-contaminated weather spectrum, 
the contaminated spectrum, and the spectrum after applying the RDR algorithm, 
respectively. Comparing the weather spectrum to the spectrum after filtering, the 
RDR method successfully located the weather spectral coefficients in the contami­
nated gates and the new velocity estimates are closer to the uncontaminated velocity 
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Figure 2.17: The weather spectrum (left), contaminated spectrum (middle), and the 
spectrum after applying the RDR algorithm (right) for a stratiform precipitation 
example. The velocity estimates, are indicated by the black stars. Visual inspection 
shows that the biases in the spectral moment estimates are reduced. 
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Figure 2.18: Same as Figure 2.17 except for a convective storm case. The velocity 
shear is handled well by the RDR method. 
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estimates. Figure 2.18 shows the mitigation results for a convective storm case to 
demonstrate that the RDR method can also handle cases with velocity shear. Quali­
tatively, it is clear that the RDR method can reduce the biases in the spectral moment 
estimates. Chapter 3 will present quantitative evaluation of the RDR method. 

2.4.3 Limitations of RDR Algorithm 

The RDR algorithm is a improvement over the the edge detection method de­
scribed in Section 2.3, but it still has limitations. The fitting used to estimate the 
weather window is a major limiting factor. To produce the best fits, weather signals 
must be present at range gates before and after the contaminated gates. Without 
weather signals on both sides, the fit becomes an extrapolation using the local trend 
of the weather signal and could produce unrealistic weather window estimates. This 
situation should occur infrequently because the size of a weather system is usually 
much larger than the size of a wind farm, but motion of the weather system could 
cause the weather system to only partially overlap with the wind farm resulting in 
lack of weather signal to perform the fit. Another limitation of the algorithm is that 
the low-order polynomial fitting cannot capture a sudden large shift in velocity or 
spectrum width, which could occur near a tornado vortex. Fortunately, under such 
severe weather situations, most wind turbines will not be operating and will not cause 
WTC contamination. 
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Chapter 3 

Simulations and Results 

To quantitatively evaluate the performance of the range-Doppler regression (RDR) 
method described in Section 2.4, weather and wind turbine clutter (WTC) time series 
were simulated to test the RDR method for different weather conditions. Simulated 
data were selected over real data because simulations allows the complete control over 
important factors such as signal-to-noise ratio (SNR), clutter-to-signal ratio (CSR), 
the location of contamination, and the velocities and spectrum widths of the weather 
signal. By using simulated weather data, the true spectral moments of the weather 
signal without contamination, which are unavailable if real data were used, can be 
used to calculate the biases before and after mitigation. Section 3.1 will explain how 
the weather and WTC time series are simulated, Section 3.2 will present the process 
used to select the optimum parameters and the final mitigation performance, and 
Section 3.3 will show the mitigation result on real data set collected by WSR-88D, 
KOUN, located in Norman, OK. 

3.1 Simulation Set Up 

To fully evaluate the capability of the RDR method to mitigate WTC contami­
nation, it must be tested under different weather conditions with different degrees of 
contamination. While some real data were available, they do not have the necessary 
variations to properly evaluate the mitigation method. Simulations, on the other 
hand, allows full control over SNR, velocity and spectrum width of the weather signal 
along with the CSR of the WTC signal. Simulated time series were used in Hood 
et al. (2010) to evaluate the automatic WTC detection algorithm and the result were 
satisfactory. This section will describe the weather and WTC simulations used in this 
work to evaluate the RDR method. 

3.1.1 Weather Signal Simulation 

Simulation of weather time series based on spectral shaping was first proposed by 
Zrnic (1975). However, this simulator can only simulate time series for a single range 
gate, which was insufficient for the purpose of evaluating the RDR mitigation method. 
The time series for a radial, which is consisted of all range gates along a single azimuth 
angle, can be simulated by simulating the weather signals for each gate individually. 
To ensure the variations of spectral moments from gate to gate are realistic, observed 
spectral moments from different weather conditions were selected manually to func­
tion as templates for the simulated weather. Using the observed weather signals as a 
basis, three parameters of the weather signals were changed during the simulation to 
generate the necessary variations to evaluate the RDR algorithm. 
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3.1.1.1 Observed Weather Signal 

The observed weather signals were selected manually from observations of dif­
ferent weather conditions by WSR-88D, KTLX, located near Oklahoma City, OK. 
Stratiform precipitation and convective storm conditions were selected to be the ba­
sis weather signals because they presents a baseline case and a challenging case to 
test the RDR algorithm. Stratiform precipitation was the first weather condition to 
be simulated. Figure 3.1 shows a 120 range gate segment of the power, velocity, and 
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Figure 3.1: Stratiform precipitation profile. The power, velocity, and spectrum width 
of the observed weather signal is plotted as a function of range gate index with the 
smaller value indicating the range gate is closer to the radar. All three spectral 
moments display small fluctuations from gate to gate, but there are no significant 
changes through the selected range gates. 

spectrum width of a stratiform precipitation event observed by KTLX on November 
15, 2010, at 14:23 UTC with elevation 0.5 degree and azimuth 315 degrees. The three 
spectral moments shows small fluctuations from gate to gate but the overall trend 
over the whole range window is constant. The stratiform precipitation weather signal 
should provide a baseline performance evaluation of the RDR because it best satis­
fies the weather continuity assumption of the RDR algorithm. Figure 3.2 shows the 
selected profile for convective storm condition. This segment was selected from an 
event observed by KTLX on May 16, 2009, at 01:10 UTC with elevation 0.5 degree 
and azimuth 287 degrees. The power and velocity profiles show significant change 
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Figure 3.2: Same as Figure 3.1 except for convective storm condition. The power 
profile shows an increases from -100 dB to -55 dB then a decline to -80 dB, the 
velocity profile shows a large shear between range gate 20 and 60, and the spectrum 
width stays relative constant but is wider than the spectrum width in stratiform 
precipitation conditions. 
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within the selected range gates, which can challenge the RDR algorithm’s capability 
to handle velocity shear and SNR variations. The selected stratiform precipitation 
and convective storm profiles cannot represent all possible weather signals, however, 
through proper scaling, a variety of different weather signals can be generated using 
the profiles shown in Figure 3.1 and 3.2. 

3.1.1.2 Weather Simulation Parameters 

The gate-by-gate weather time series simulator based on (Zrnic 1975) required 
seven input parameters for each range gate: the number of samples per time series, 
noise power, aliasing velocity, SNR, velocity, and spectrum width of the weather 
signal. The first three parameters were fixed in this work with M = 80, N = -80 dB, 
and va = 28. The last three parameters for each range gate were determined from 
profiles generated from the observed weather signal. Three parameters were varied 
in this work to generate different weather profiles: mean velocity, mean spectrum 
width, and maximum SNR. The mean velocity is defined as the average of the radial 
velocities for all range gates in a profile and is calculated using 

n=120n1 
v = v(n) (3.1)

120 
n=1 

where v is the mean velocity of a profile, n is the index of the range gates, and v(n) 
is the radial velocity at range gate n in the profile. A new velocity profile can be 
generated using 

v'(n) = v(n) − v0 + vsim (3.2) 

where v0 is the mean velocity of the observed weather profile, vsim is the mean velocity 
for the simulated profile, and v'(n) is the simulated velocity at range gate n in the 
new profile. By only changing the mean velocity of a profile during simulation, the 
gate to gate variations in velocity for the simulated weather signal was the same as 
the original weather profile, which ensures the simulated weather signal had realistic 
small scale variations. Since the aliasing velocity of the simulated weather signals was 
28 ms−1 , the simulated values for vsim, listed in Table 3.1, were evenly distributed 
between -28 m s−1 to 28 ms−1to generate testing cases for all velocities. 

Table 3.1: Parameter values used in weather simulations 

Parameter Name Simulated Value 
Mean Velocity (m/s) -25, -14, 0, 14, 25 
Mean Spectrum Width (m/s) 1, 2, 4 
Maximum SNR (dB) 20, 30, 40, 50, 60 

The mean spectrum width is similarly defined as the the average of the spectrum 
width for all range gates in a profile and is calculated using 

1 
n=120n 

w = 
120 

w(n) (3.3) 
n=1 
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where w is the mean spectrum width of a profile and w(n) is the spectrum width 
at range gate n in the profile. Since spectrum width must be negative, a shift of 
the mean spectrum width cannot be used to generate a new spectrum width profile, 
instead, the following rule was used to generate a new spectrum width profile 

w(n) − w0 + wsim w0 < wsim 
w ' (n) = (3.4)

0.1−wsim 
dmin 

d(n) + wsim w0 ≥ wsim 

where 
d(n) = w(n) − w0 (3.5) 

In Equation (3.4), w0 is the mean spectrum width of the observed weather profile, 
wsim is the mean spectrum width of the simulated profile, dmin is the minimum of 
d(n) over all n, and w ' (n) is the simulated spectrum width at range gate n in the new 
profile. If wsim is greater than w0, then no spectrum width in the simulated profile 
will be nonpositive, and simple shifting of the mean spectrum width can be used to 
generate the new profile. Otherwise, a scaling factor was applied after subtracting 
w0 to ensure that the minimum spectrum width in the simulated profile is 0.1 m s−1 . 
The gate to gate variations in spectrum width were changed by applying the scaling 
factor, but the differences were minimal and the new profiles were still realistic. 

The last parameter that were adjusted in the simulations was the maximum SNR. 
The reason maximum SNR was used instead the mean SNR is that the mean SNR 
was not a good representation of the weather power in convective storm conditions 
due to the large power variations in range, as shown in Figure 3.2. Adjusting the 
maximum SNR of the profiles also prevented the simulated weather signals from 
having unrealistic power levels. The maximum SNR is adjusted through a linear 
mapping of signal powers given by 

ssim − Nsimmax s ' (n) = (s(n) − N0) + Nsim (3.6) 
smax − N0 

where N0 is the observed noise power, Nsim is the simulated noise power, smax is 
the maximum observed weather power, s(n) and s ' (n) are the weather power and 
simulated weather power at range gate n, respectively. ssim is the maximum power max 

in the simulated profile and is given by 

s sim = Nsim × SNRsim (3.7)max max 

where SNRsim is the maximum SNR in the simulated weather profile. The SNRs max 

of simulated weather signals are plotted against the SNRs of the observed weather 
signals in Figure 3.3. For stratiform precipitation, the SNRs of the simulated weather 
signal are related to the SNRs of the observed weather by a constant shift determined 
by SNRsim 

max and the maximum SNR of the observed weather signal, SNRmax. The 
same holds for convective storm when SNRsim used to simulated the weather signal max 

is larger than SNRmax. However, when Ssim is lower than SNRmax, the relationship max 

between simulated SNR and observed SNR is divided into two regimes. For range 
gates with observed SNR higher than a threshold, the simulated SNR are a constant 
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Figure 3.3: SNR of simulated weather signal versus the SNR of the observed signal 
for stratiform precipitation (left) and convective storm (right). The different colors 
correspond to the different maximum SNR listed in Table 3.1. 

shift of the observed SNR; for range gates with observed SNR below a threshold, 
the simulated SNR are almost zero. The non linear behavior implied that when 
simulating weak convective storm signal, more range gates will have near zero SNR 
and TSNR used to determine SNR weight need to be adjusted to reflect this artifact 
of the simulation. 

3.1.1.3 Weather Simulation Result 

Varying the parameters as described in Section 3.1.1.2 generated 75 different 
weather profiles for each of the two weather conditions and ten realizations for each 
weather profile were simulated to allow for statistical evaluation of the performances. 
Figure 3.4 shows one realization of simulated stratiform precipitation range-Doppler 
spectrum for different simulation parameters. As expected, the peak of the weather 
spectrum in each range gate is shifted, as shown in the middle left panel of Figure 3.4, 
when v is changed to 14m s−1 from the observed 6.6 m s−1 and w and maximum SNR 
are kept the same. The simulated weather signal appears stronger than the observed 
weather signal because the simulated signals have a higher noise power than the ob­
served weather signals. The middle right panel shows the simulated weather range-
Doppler spectrum when w is changed to 4 ms−1 from the observed 1.6 m s−1while 
v and maximum SNR are kept the same. The increase in spectrum width for each 
range gate causes the weather signal power to spread into more frequency bins as 
expected. The right panel shows the simulated spectrum when v and w are kept the 
same and the maximum SNR is reduced from 46 dB to 30 dB. Despite the reduced 
SNR, the variations in signal power from gate to gate is the same as in the observed 
weather spectrum. 
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Figure 3.4: Range-Doppler spectrum of observed and simulated stratiform precipitation weather signals showing the effects of
adjusting the simulation parameters. The adjustable parameters of the simulated weather signals are listed in the titles. 



Since the WTC simulation process, described in Section 3.1.2, can control which 
range gates are contaminated, histograms of estimated velocities and spectrum widths 
of the simulated weather signal in those contaminated gates can be plotted to validate 
the weather simulator and to demonstrate that a variety of contamination situations 
were used to test the RDR algorithm. Figure 3.5 shows the histogram of estimated 
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v = −25
v = −14
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Figure 3.5: Histogram of estimated velocities in the contaminated gates for strati-
form precipitation (left) and convective storm (right). The peaks in the stratiform 
precipitation histograms match the v used in the simulations, while the convective 
storm histograms are bimodal due to velocity shear. 

velocities in the contaminated gates for both weather conditions. The peaks of the 
histograms for stratiform precipitation match the v used for the simulations because 
the velocity profile for stratiform precipitation is relatively constant in range as shown 
in Figure 3.1. The peak at 0 m s−1 is lower than the other peaks because the applica­
tion of the GCF caused the estimated velocity to deviate from the simulated velocity, 
which resulted in more occurrences in the histogram bins centered around 0 m s−1 . 
The histograms for convective storm are bimodal with peaks located about ±7 ms−1 

from the simulated v. Referring to the velocity profile of convective storm in Fig­
ure 3.2, the larger peak located about -7 m s−1 from the simulated v results from the 
range gates with index between 70 to 120 and the smaller peak located about +7 
ms−1 from the simulated v results from the range gates with index between 0 and 30. 

The spectrum width distributions are shown in Figure 3.6 where the peaks corre­
spond to the simulated w for both weather cases. Overall, a range of spectrum width 
from 0.5 ms−1 to 6 ms−1 for both weather conditions were generated in the simula­
tions to test the RDR algorithm. The good match between the simulated parameters 
and the peaks of the histograms showed that the weather time series simulator was 
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Figure 3.6: Same as Figure 3.5 except for estimated spectrum widths in the contami­
nated gates. The peaks correspond well to the simulated w because there are no large 
scale variation in velocity for both weather conditions. 

functioning correctly. The histograms for simulations using different SNRmax will be 
shown in Section 3.1.2.3. 

3.1.2 Wind Turbine Clutter Simulation 

To control the location and degree of contamination, WTC time series were sim­
ulated using spectral shaping methods similar to the weather time series simulator 
used in Section 3.1.1. Ten different WTC range profiles were selected manually from 
data collected by KDDC in scanning mode on March 31, 2006, to cover different vari­
ations of WTC signals in range. Since the power of weather signals and the power 
of WTC signals vary independently in range, it is best to control the power of the 
simulated WTC signal through clutter-to-noise (CNR) instead of CSR. By selecting 
the CNR carefully and changing the index of the contaminated range gates, a good 
distribution of CSR was achieved. By changing the index of the contaminated range 
gates, different overlapping situations between weather signal and WTC signal were 
also simulated. Overall, 400 different range profiles were simulated to evaluated the 
RDR algorithm. 

3.1.2.1 Observed Wind Turbine Clutter 

WTC signals can have different variations in range depending on the model of the 
turbine, the number of turbines in the radial, and the spacing between the turbines, 
which makes it impractical to simulate all possible range variations of WTC signals. 
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As a result, ten radials were selected from data collected by KDDC in scanning mode
 
on March 31, 2006, to function as the templates for the simulated WTC signals. Two
 
example radials are shown in Figure 3.7 where the left panel shows a radial with
 

Figure 3.7: Range-Doppler spectra for two different radials showing the different 
range variations in WTC signals. 

discontinuous WTC signal. The contaminated gates are separated from each other 
and most likely caused by different wind turbines. The contaminated gates in the 
right panel are more connected and the WTC signals are significantly stronger. Also 
shown in the example radials were weak weather signals located around -10 m s−1 . To 
remove the weather echos in the observed data, a 30 dB SNR threshold were applied 
to determine which range gates had WTC signals and those range gates were used as 
templates for WTC simulations. For each radial, depending on the range variation of 
the WTC signal, one range gate immediately neighboring the range gates with WTC 
contamination may be manually included in the templates to preserve the natural 
transitions in range. For example, range gate 25 in the right panel of Figure 3.7 
would be manually added to the template despite not having 30 dB SNR because it 
is more likely to be part of the WTC signal range variation. The noise powers in each 
radial were measured by averaging range gates with no signal present. 
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3.1.2.2 Wind Turbine Clutter Simulator
 

With the template of the WTC signals selected from observed data, a time series 
simulator using spectral shaping were developed. It was desirable to simulate WTC 
time series because the real data have fixed CNR which limited the range of possible 
CSRs. Spectral shaping based simulation was selected over model based simulations 
(Gallardo-Hernando et al. 2011) because the telemetry information for the observed 
data was not available and it was more desirable to have the simulated time series 
produce the same shaped Doppler spectra as the observed data to test the RDR 
algorithm. 

The inputs to the WTC time series simulator are the Doppler spectrum and 
noise power for a range gate with WTC signal. Assuming the noise is white, the 
simulator subtract the noise power from the Doppler spectrum to produce the noiseless 
amplitude spectrum. Any negative spectral coefficients after the subtraction are set to 
zero. Random phases from a uniform distribution between [−ππ] are then generated 
for each spectral bin. The complex simulated spectrum is formed by combining the 
square root of the noiseless amplitude spectrum with the random phases spectral bin 
by spectral bin. Then an inverse Fourier transform is taken on the simulated complex 
spectrum to generate the time series, which can be added to the simulated weather 
time series to generate different testing cases for the RDR algorithm. 

3.1.2.3 Combining Weather and WTC simulations 

To evaluate the RDR algorithm, the simulated weather signals and WTC signals 
must be combined intelligently to generate the most testing cases with limited sim­
ulation parameter variations. The simulated weather signals had three adjustable 
simulation parameters: SNRsim , v and w, while the maximum CNR as was themax

only adjustable simulation parameter for the WTC signals. By changing the maxi­
mum CNR, the CSR of the combined signal can be varied. Combining the simulated 
weather signal and WTC signal was done by adding the simulated time series to a 
fixed noise time series. For each fixed maximum CNR, it was possible to generate 
more testing cases with different CSRs by changing the range gates where the WTC 
time series was added to the weather time series. In this work, each simulated weather 
signal contains 120 range range gates, while the simulated WTC signals have different 
number of range gates depending on the template used. For each simulated weather 
signal, 10 equally spaced range gates were chosen to function as the starting range 
gate for WTC contamination. The changing locations of the WTC signals can also 
test the RDR algorithms’s capability to handle different spatial relationships between 
weather signals and WTC signals. Figure 3.8 show examples of WTC signals at differ­
ent locations with different CNRs. In the left panel, the WTC contamination starts 
at range gate 43 and the maximum CNR is equal to 70 dB. In this testing case, there 
are range gates with weather signals before and after the contaminated gates, which 
is the ideal for the RDR algorithm. In the right panel, the contamination starts at 
range gate 15 and have maximum CNR equal to 90 dB. This case is more challenging 
for the RDR algorithm because the range gates before the contamination have weak 
weather signals and the clutter is much stronger than the weather signal. 
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Figure 3.8: Range-Doppler spectra of simulated contaminated time series with WTC 
signals at different locations with different CNR. The WTC time series was simulated 
using the same template, and the simulated weather signal is the same for the two 
panels. 
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For each WTC template, four maximum CNR and 10 range location were used 
to generate 400 total unique WTC contamination cases, that combined with the 75 
unique simulated weather profiles generated 30,000 testing cases with 10 realization 
per case for each weather conditions. In total, 600,000 range-Doppler spectrum were 
processed to evaluate the performance of the RDR algorithm. The SNR and CSR 
for each contaminated range gates in each processed range-Doppler spectrum were 
binned into a two-dimensional histogram, which is shown in Figure 3.9. For each 

Figure 3.9: Two-dimensional histogram showing the SNR and CSR distributions of 
the contaminated range gates in the simulated stratiform precipitation (left) and con­
vective storm (right) testing cases. The x-axis is the SNR of the weather signal in the 
range gate, the y-axis is the CSR of the WTC signal in the range gate, and the color 
represents how many range gates have that particular SNR and CSR combination. 
The bin width for both SNR and CSR is 2 dB. 

SNR bin with SNR ranging from 0 dB to 60 dB and CSR bin with CSR ranging from 
-20 dB to 50 dB, more than 1000 contaminated gates were simulated for convective 
storm condition. For stratiform precipitation condition, the same hold true except no 
range gate with SNR below 8 dB were simulated. Despite not having equal number 
of testing cases for each SNR and CSR combination, the simulated signals generated 
enough cases to statistically evaluate the RDR algorithm for stratiform precipitation 
and convective storm conditions. 

3.2 Simulation Results 

After simulating the time series for weather and WTC signals, the parameters 
of the RDR algorithm was tuned and the statistical performance of the RDR was 
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calculated. First introduced by Hood et al. (2010), the delta biases of each spectral 
moment estimates were used to measure the performance of the RDR algorithm. The 
delta biases for the three spectral moment estimates are defined as 

Δs = 10 log(s̃) − 10 log(s) (3.8) 

Δv = ṽ − v (3.9) 

Δw = w̃ − w (3.10) 

where Δs, Δv, and Δw are the delta biases of the power, velocity and spectrum 
width estimates. s̃, ṽ, and w̃ are the power, velocity, and spectrum width estimates, 
respectively, after applying the RDR algorithm to a testing case, while s, v, and w are 
the spectral moment estimates of the simulated weather signal for the same testing 
case. The delta biases for each range gate were then binned according to the SNR 
and CSR for that range gate, and the mean delta bias, denoted by Δs, Δv, and Δw 
respectively, for each SNR and CSR bin were calculated. To eliminate the effects of 
the GCF on the performance of the RDR algorithm, range gates with weather signals 
having velocity with magnitude less than 1 m s−1 and spectrum width less than 0.5 
ms−1 were not used in calculating the statistics of the delta biases. Range gates 
with simulated weather signal having spectrum width larger than 6 m s−1 were also 
excluded because weather signal with such large spectrum width rarely occur in real 
observations. Figure 3.10 
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Figure 3.10: Example performance plot showing the mean delta biases for signal power (left), velocity (middle), and spectrum
width (right) after applying the RDR algorithm. The x-axis is SNR, the y-axis is the CSR, and the color represents the mean
delta bias for each spectral moment estimate. The SNR bins range from 12 dB to 52 dB with bin width equal to 2 dB. The CSR
bins range from -20 dB to 50 dB with bin width equal to 2 dB. 



shows an example performance plot for stratiform precipitation. The Δv and Δw are 
within ±2 ms−1 for all bins, while Δs are slightly negative for CSR less than 10 dB, 
and have a periodic structure for CSR larger than 10 dB. The reason for the periodic 
structure is explained in Section 3.2.2. 

3.2.1 Parameter Optimization 

The RDR algorithm had eight parameters, which are the orders of the power, 
velocity, and spectrum width fit, the weather window width factor, the proximity 
threshold, the SNR threshold, and the threshold for CSRest1 and CSRest2, that need 
to be optimized. An exhaustive search to find the optimum parameters was no prac­
tical due to the limitation of computing resources. To process all simulated testing 
cases would require 5.5 hours for each set of parameters, which implies a exhaustive 
search with three variations for each parameter would require over 4 years to com­
plete. However, if the parameters were assumed to be independent, then a search can 
be performed for each parameter while the other parameters were fixed. Compared to 
the exhaustive search, a independent search with three variations for each parameter 
would only require 6 days to complete. From the description of the RDR algorithm 
in Section 2.4, it is clear that the parameters are not necessarily independent, but the 
computation convenience made it the preferred method to optimize the parameters. 

Since optimizing the parameters of the RDR algorithm involves trade offs in per­
formance for different situations, it was necessary to be able to compare the perfor­
mances for different parameter sets quantitatively. The percentage of SNR and CSR 
bins that have |Δs|, |Δv|, and |Δw| less than their respective threshold can be used 
to quantify the performance images. The parameter set that gives the maximum per­
centage bins would be selected as the optimum parameter. In this work, the threshold 
for |Δs|, |Δv|,|Δw| are 2 dB, 2 ms−1 , and 2 ms−1, respectively. The parameters 
were optimized in the order they appear in the RDR algorithm. The initial values for 
the parameters, listed in Table 3.2, were determined by visual inspection of multiple 
performance plots. 

Table 3.2: Parameter values before optimization. 

Parameter Name Simulated Value 
SNR Threshold -2 dB 
Proximity Threshold 13 
Velocity Fit Order 2 
Spectrum Width Fit Order 2 
Weather Window Width Factor 2.3 
Power Fit Order 2 
CSRest1 Threshold 7 dB 
CSRest2 Threshold 3 dB 
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3.2.1.1 SNR Weight Thresholds 

With other parameters set to the values listed in Tabel 3.2, the SNR threshold was 
the first parameter to be optimized and the result is shown in Figure 3.11. The 
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Figure 3.11: SNR threshold optimization result for stratiform precipitation (left) and 
convective storm (right). The x-axis is the SNR threshold and the y-axis is the 
percentage of bins that have delta biases below the threshold. The SNR threshold is 
changed from -10 dB to 10 dB in 1 dB steps. 

red, green, and black curves shows the percentage of bins that have |Δs|, |Δv|, and 
|Δw| less than the thresholds individually while the blue curve shows when delta 
biases for all three spectral moments are less than the thresholds. For stratiform 
precipitation, Figure 3.11 shows that |Δv| and Δw| are less than 2 ms−1 for all bins 
and all SNR threshold values. The limiting factor on the performance is the delta bias 
for signal power estimates. The composite performance for stratiform precipitation 
did not degrade as the SNR threshold become negative because all range gates in 
the simulated stratiform precipitation weather profiles had SNR above 0 dB and 
no range gate containing noise signal only received non-zero weighting despite the 
SNR threshold being negative. When the SNR threshold become large, gates with 
significant weather signals received zero weighting and the performance for stratiform 
precipitation condition degraded. 

Similarly, the performance curves for convective storm weather shows that the 
bias for signal power estimates determines the overall performance of the algorithm. 
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Then the SNR threshold is decreased below 0 dB, the performance of the algorithm 
degraded because range gates with noise signal were allowed to contribute to the ve­
locity and spectrum width fit. The non-linear scaling of the SNR, shown in Figure 3.3, 
caused more range gates in the simulated weather signal to have near zero SNR, which 
lead to negative SNR estimates after the GCF is applied. The presence of negative 
SNR estimates causes the performance of the algorithm for SNR threshold between 
-10 to -1 dB continue decreasing because more range gates with noise signal only 
were included in the fits. When the SNR threshold is above 7 dB, the performances 
for stratiform precipitation and convective storm both decreased because range gates 
with weather signal were excluded from the fits. Based on the composite performance 
curve for both weather cases, 3 dB was selected as the optimum SNR threshold for 
the reminder of the study. 

3.2.1.2 Proximity Threshold 

The second set of weights used in the low-order polynomial fits for velocity and 
spectrum width was based on the proximity of a non-contaminated gate to the closest 
contaminated gates. Varying the proximity threshold changes the maximum number 
of gates that could receive non-zero weighting and Figure 3.12 shows the performance 
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Figure 3.12: Same as Figure 3.11 except the x-axis is the proximity threshold. The 
proximity threshold is changed from 4 gates to 45 gates in increment of 1 gate. 

as a function of proximity threshold. Other parameters were set to the values in 
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Table 3.2. For both weather conditions, the delta biases of the power estimates after
 
applying the RDR algorithm limits the overall performance of the RDR algorithm. 
The magnitude of mean delta bias for both velocity and spectrum width after pro­
cessing is below 2 m s−1 threshold for all SNR and CSR bins as long as the proximity 
threshold is larger than 10. When the proximity threshold is small, the performance 
of the RDR algorithm declined sharply because the velocity and spectrum width fit 
did not capture the local trend robustly, which is caused by not having enough spec­
tral moment estimates with non-zero weight to use in the fits. The performance for 
power also decreased when the proximity threshold is large because information from 
range gates that are far away from the contaminated gates were less useful in pre­
dicting the weather power in the contaminated gates. As the proximity threshold is 
increased, the decline in performance is slower for stratiform precipitation than for 
convective storm because the decorrelation distance of weather signal power is larger 
for stratiform precipitation. 

The proximity threshold that gave the best performance for stratiform precipita­
tion and convective storm did not match exactly, but both had peak located between 
15 and 25 range gates, and the proximity threshold was set to 20 gates for the re­
mainder of the study. 

3.2.1.3 Velocity Fit Order 

After determining the parameters to set the weights for the velocity and spectrum 
width fits, the next parameter to be optimized was the velocity fit order. Figure 3.13 
shows the performance of the RDR algorithm as a function of the velocity fit order. 
For stratiform precipitation, the performance curve suggests that the performance 
does not depend on the velocity fit order for the lowest orders. The extremely small 
variations in performance could be caused by statistical fluctuations. For convective 
storm, the performance of the algorithm shows a drop off when the velocity fit is higher 
than third order. The reason for the drop off is that when there are a large number of 
consecutive gates that are contaminated, a high order fit introduces artificial velocity 
variation in the contaminated gates. The optimum velocity fit order is selected to be 
second order because previous parameters were optimized using second order velocity 
fits and the differences in performance between second order and first or third order 
are minimal. 

3.2.1.4 Spectrum Width Fit Order 

The spectrum width fit was varied from first order to fifth order in an attempt to 
find the optimum fit order. Figure 3.14 shows the performance of the RDR algorithm 
as a function of the spectrum width fit order. Similar to velocity fit order, the 
differences in performance for stratiform precipitation are minimal and may be caused 
by statistical fluctuations. For convective storm, there are slightly improvements in 
performance for fourth and fifth order fits, but the improvements are not significant 
enough to justify changing the optimum spectrum width fit order from second order 
to fifth order. 
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Figure 3.13: Same as Figure 3.11 except the x-axis is the velocity fit order. The 
velocity fit is varied from first order to fifth order. 
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Figure 3.14: Same as Figure 3.11 except the x-axis is the spectrum width fit order. 
The spectrum width order is varied from first order to fifth order. 
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3.2.1.5 Weather Window Width Factor 

The weather window width factor is the last parameter that controls the estima­
tion of the weather window. It limits the maximum spectrum width bias according 
to   

K 
Biasmax(σv) = √ − 1 σv (3.11)

3 

where K is the weather window width factor and σv is the spectrum width esti­
mate. Equation (3.11) was derived by assuming the fitted spectrum width is equal 
to the spectrum width of the uncontaminated weather signal and and spectral coef­
ficients inside the weather window are constant. The optimum K cannot be set to √ 
3 because the fitted spectrum width rarely equal the spectrum width of the uncon­

taminated weather signal and the spectral coefficients inside the weather window are 
never constant. However, Equation (3.11) does imply that the optimum K should 
not be extremely large or small. 

The simulation results are shown in Figure 3.15 with several interesting features. 
For both stratiform precipitation and convective storm, the spectrum width only per-
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Figure 3.15: Same as Figure 3.11 except the x-axis is K. K is increased from 0.5 to 
3.5 in 0.1 increments. 

formance curve decreases sharply for large K values, which is expected according to 
Equation (3.11). The velocity only performances are unaffected because the weather 
window is symmetric around the fitted velocity and increasing K should not affect 
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the velocity estimates if the weather window has captured the majority of the weather 
spectral coefficients. The power only performance for stratiform precipitation is al­
most constant once K is larger than 1, and the performance for convective storm is 
continuously increasing for K ranging from 1 to 3.5. The reason for the continuous 
increase in power performance is that for large K, the majority of the spectrum is 
included in the weather window. For low CSRs, using the majority of the spectrum to 
estimate the weather signal power is better because the likelihood of the weather win­
dow missing the weather signal is reduced. For high CSRs, the weather signal power 
estimates are based on a low-order polynomial fit rather than the weather window, 
so a larger weather window containing more WTC power does not negatively impact 
the performance. The slight increase in performance for K equals to 0.5 is explained 
by the fact that an extremely narrow weather window will significantly underestimate 
the weather power, which causes CSRest2 to be artificially increased. Larger CSRest2 

leads to the fitted power being used as the weather signal power estimate, which are 
more accurate than the power estimates based on the narrow weather window. 

Based on the performance curves, the optimum K is 2.5. Since the performance 
difference between 2.3 and 2.5 are small and 2.3 was used in previous optimizations, 
it is selected as the optimum value for the rest of the optimization. 

3.2.1.6 Power Fit Order 

As discussed in Section 2.4.2, the WTC power contained in the weather window 
will bias the weather signal power estimates, and the degree of biases depends on 
the CSR. For high CSRs, the biases caused by the WTC power inside the weather 
window is significant and a weighted low-order polynomial fit using non-contaminated 
weather signal power become a better estimator for the weather signal power in the 
contaminated gates. The performance of the RDR algorithm for different power fit 
orders are plotted in Figure 3.16. Both stratiform precipitation and convective storm 
show the same trend where the performances are better for second or third order fit 
and are lower for first, fourth, and fifth order fits. The higher order fits performed 
poorly for both weather cases because the extra degrees of freedom allowed the fitted 
power to not follow the local trend of the weather signal power when a large number 
of consecutive range gates were contaminated. The first order fits could not capture 
the local trend in weather signal power, especially for convective storm. Based on 
Figure 3.16, the optimum power fit order was set to two. 

3.2.1.7 CSR Estimator Thresholds 

The independent search optimization result for CSRest1 threshold is shown in 
Figure 3.17. The decision logic for whether to base the weather signal power estimate 
on the weather window or the low-order fit is shown in Table 3.3. Based on the 
decision logic, the weather signal power estimate is determined by the low-order fit 
for all CSRs when a low CSRest1 threshold is used. In Figure 3.17, the performances 
forCSRest1 threshold equals -10 dB approximate the performances when the fit is 
always used, and the performances are good but not the best. When a high threshold 
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Figure 3.16: Same as Figure 3.11 except the x-axis is the power fit order. The power 
fit order is varied from first order to fifth order. 

Table 3.3: Decision logic for weather signal power estimate. 

CSRest1 < Threshold CSRest1 ≥ Threshold 
CSRest2 < Threshold Weather Window Low-Order Fit 
CSRest2 ≥ Threshold Low-Order Fit Low-Order Fit 
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Figure 3.17: Same as Figure 3.11 except the x-axis is the CSRest1 threshold. CSRest1 

threshold is varied from -10 dB to 20 dB in 1 dB increment. 
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for CSRest1 is used, the decision to base the weather signal power estimate on the 
weather window or the low-order fit is entirely determined by the CSRest2 threshold, 
but as discussed in Section 2.4.2, only using CSRest2 to make the decision was not 
ideal because CSRest2 had large variances. The decline in performance for both 
weather cases for high CSRest1 thresholds matched the expectation. Since CSRest1 

asymptotically approaches 0 dB when the true CSR is smaller than 0 dB, having 
a threshold at 0 dB essentially reduces the decision to use the weather window or 
the low-order fit for weather signal power estimate to whether the fit overestimate 
or underestimate the weather signal power. If the fit overestimate the weather signal 
power, CSRest1 would be less than 0 dB and the weather window would be used 
to determine the weather signal power estimate, and if the fit underestimate the 
weather signal power estimate, CSRest1 would be larger than 0 dB and the fit would 
be used to determine the weather signal power estimate. By using the fit only when 
it underestimate the weather signal power, the performance for both weather cases 
reaches a minimum as shown in Figure 3.17. Considering both weather cases, the 
optimum CSRest1 threshold according to Figure 3.17 is around 10 dB. 

The performance of the RDR algorithm as a function of CSRest2 threshold is 
plotted in Figure 3.18. Based on Table 3.3, small CSRest2 threshold implies the low-
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Figure 3.18: Same as Figure 3.17 except the x-axis is the CSRest2 threshold. 

order fit is used to determine the weather signal power estimate for all CSRs regardless 
what threshold is set for CSRest1. When CSRest2 threshold is raised, the performance 
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for convective storm falls off rapidly because CSRest1 is used solely to determine the 
weather signal power estimates. For low CSRs, using only CSRest1 causes the fit to 
be used only when it is underestimating the weather signal power, resulting in large 
delta biases. For stratiform precipitation, the performance improved slightly as the 
CSRest2 threshold is increased. The reason for the contrasting trend is that CSRest1 

has lower variance for stratiform precipitation, and the problem of using the fit only 
when it underestimates the weather signal power is mitigated somewhat by CSRest1 

threshold being 7 dB for the CSRest2 optimization runs. According to Figure 3.18, 
the optimum CSRest2 threshold is around -2 dB. 

Because the CSRest1 and CSRest2 thresholds are used together to decide whether 
the weather window or the fit is used to determine the weather signal power es­
timates, a two-dimensional search is performed to serve as a confirmation for the 
independent search results. Figure 3.19 shows the composite results for both weather 

Figure 3.19: Performance of the RDR algorithm as a function of CSRest1 and CSRest2 

thresholds for stratiform precipitation (left) and convective storm (right). The x-axis 
is CSRest1 threshold, which is varied from -10 dB to 20 dB in 2 dB increments. 
The y-axis is the CSRest2 threshold, which is varied from -10 dB to 10 dB in 2 dB 
increments. The color for each threshold pair represent the percentage of bins having 
acceptable mean delta bias for all three spectral moments. 

cases. The minima in performance always occur whenCSRest1 threshold is around 
0 dB for any fixed CSRest2 threshold, implying the performance curves plotted in 
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Figure 3.17 is typical. For convective storm, the same trend as in Figure 3.18 occurs 
for each fixed CSRest1 threshold. However, the trend in Figure 3.18 for stratiform 
precipitation does not hold for all CSRest1 thresholds. For large CSRest1 thresholds, 
the stratiform precipitation performance as a function of CSRest2 threshold follows 
the same trend as the convective storm performance where the performance decreases 
as CSRest2 threshold increases. To find the optimum threshold using Figure 3.19, the 
performances for both weather cases is averaged for each threshold pair, and opti­
mum thresholds are 10 dB and -4 dB for CSRest1 and CSRest2, respectively. The 
two-dimensional search results confirmed the optimum thresholds determined using 
independent search, which provides more confidence in other optimum parameters 
found using independent search. The final optimum parameter values are listed in 
Table 3.4 and the performance of the RDR algorithm with the optimum parameters 
are presented in the next section. 

Table 3.4: Parameter values after optimization. 

Parameter Name Simulated Value 
SNR Threshold 3 dB 
Proximity Threshold 20 
Velocity Fit Order 2 
Spectrum Width Fit Order 2 
Weather Window Width Factor 2.3 
Power Fit Order 2 
CSRest1 Threshold 10 dB 
CSRest2 Threshold -4 dB 

3.2.2 RDR Algorithm Performance Assessment 

After determining the optimum parameter values, the RDR algorithm with the op­
timum parameters was applied to all realizations of simulated time series, and the 
performances for stratiform precipitation and convective storm are shown below. 
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Figure 3.20: Performance of the RDR algorithm for stratiform precipitation using optimum parameters. The mean delta bias
for weather signal power (left), velocity (middle), and spectrum width (right) are plotted as a function of SNR and CSR of the
contaminated gates. 



Figure 3.21: Same as Figure 3.20 except for convective storm. 
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For both stratiform precipitation and convective storm, |Δv| and |Δv| are less 
than 2 ms−1 for all SNRs and CSRs. For convective storm, |Δs| is less than 2 dB for 
98.3% of the bins with maximum Δs being 2.75 dB and minimum Δs being -3.92 dB. 
For stratiform precipitation, applying the RDR algorithm to stratiform precipitation 
reducedΔs to less than 2 dB for 97.5% of the bins, and the maximum Δs is 2.30 
dB and the minimum of -2.42 dB. The extreme values of Δs indicate that the RDR 
algorithm did not fail completely for the SNR and CSR combinations that have |Δs|
over 2 dB. 

Observing the |Δs| plot for stratiform precipitation in Figure 3.20, there is a 
periodic occurrence of positive and negative Δs as a function of SNR for CSR greater 
than 0 dB. For high CSR, the low-order polynomial fit is used to determine the 
weather signal power estimate after applying the RDR algorithm. Since the weather 
signal power have natural variations in range, the fit would overestimate the weather 
signal power for a range gate if that gate have lower SNR than its neighboring gates. 
If the range gate has a higher SNR than its neighboring gates, then the fit would 
underestimate the weather signal power. This behavior of the fit generates a patter 
of positive and negative Δs for each set of simulated weather signal, and the pattern 
is repeated because five set of weather signals with different maximum SNR were 
simulated. 

The performances of the RDR algorithm shown in Figure 3.20 and 3.21 contain all 
simulated weather signals except the cases where the simulated weather signal have 
a spectrum width less than 0.5 m s−1 and velocity between ±1 ms−1, and those cases 
were removed to prevent the biases introduced by the GCF from being included in 
the performance evaluations of the RDR algorithm. To further evaluate the RDR 
algorithm, performances for different velocity and spectrum width groups are shown 
next. Figure 3.22 show the performance of the RDR algorithm for stratiform precip­
itation with small velocities. The performance is worse than the performance when 
all velocities are included, especially for cases with CSR between 10 to 20 dB. The 
hub component of the WTC contamination located near zero Doppler causes CSRest2 

to be negatively biased, which leads to more cases with medium CSR to using the 
weather window to determine the weather signal power estimate. Since the weather 
window for a weather signal with near zero velocity include the hub contamination, 
the power estimates after applying the RDR is more positively biased. Figure 3.23 
and 3.24 shows the performance for stratiform precipitation with medium and high 
velocities, respectively. Since the weather signals are located farther away from the 
hub component of the WTC contamination, the performances matches the overall 
performance much better. The same trend holds for convective storm as well. 

The performances of the RDR algorithm for weather signals with different spec­
trum width is shown next. Observing Figure 3.25 and 3.26, the RDR performs well 
for convective storms with spectrum width less than 4 m s−1 . For weather signals 
with larger spectrum width, there are is a large increase in Δs for CSR greater than 
0 dB, which can be seen in Figure 3.27. The same increase in delta bias for weather 
signal power estimate also occurs for stratiform precipitation. One reason for the 
increase in delta bias is the small number of range gates with spectrum width larger 
than 4 ms−1 . The histogram of the spectrum width distribution, shown in Figure 3.6, 
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Figure 3.22: Performance of the RDR algorithm for stratiform precipitation weather 
signals with velocity magnitude between 1 m s−1 and 5 ms−1 . 

Figure 3.23: Same as Figure 3.22 except for weather signals with velocity magnitude 
between 5 m s−1 and 15 ms−1 . 
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Figure 3.24: Same as Figure 3.22 except for weather signals with velocity magnitude 
larger than 15 m s−1 . 

Figure 3.25: Performance of the RDR algorithm for convective storm weather signals 
with spectrum width less than 2 m s−1 . 
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Figure 3.26: Same as Figure 3.25 except for weather signals with spectrum width 
between 2 m s−1 and 4 ms−1 . 

Figure 3.27: Same as Figure 3.25 except for weather signals with spectrum width 
between 4 m s−1 and 6 ms−1 . 
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shows that the number of range gates with spectrum width greater than 4 m s−1 less 
than half of the number of range gates with spectrum width between 2 m s−1 and 4 
ms−1 . Also, the range gates with spectrum width larger than 4 m s−1 mostly come 
from simulations with w = 4 ms−1and they all have spectrum width greater than the 
average spectrum width for that range profile, which implies they are from the same 
range gates in different simulated profiles. Since the low-order polynomial fit was 
used to determine the weather signal power estimate for high CSR cases, contamina­
tions at same location would result in similar fits with similar delta biases since the 
weather signal power used to generate the fit are different by a constant, especially 
for stratiform precipitation. The high mean delta biases are the results of not having 
positive and negative delta canceling out. 

Through simulations, the RDR algorithm is proven to be capable of reducing the 
biases introduced by WTC contamination for a wide range of SNR and CSR. However, 
as shown in Figure 3.22, weather signals with velocities near 0 m s−1 are not handled 
well by the RDR algorithm. Similarly, when the algorithm has to rely on the fit to 
produce the weather signal power estimates, large biases could occur on a gate to gate 
basis. Also, the CSR estimators have large variances and can only operate well for 
limited CSR ranges. These limitations of the RDR algorithm need to be investigated 
further before an operational algorithm can be implemented. 

3.2.3 RDR Algorithm on Non-Contaminated Gates 

One key requirement of the RDR algorithm discussed in Section 2.4.1 in the ap­
proximate knowledge of the contaminated gates. It was argued that a conservative 
estimation of contaminated gates based on the known locations of the wind turbines 
can also be used to satisfy the requirement. Figure 3.28 and 3.29 show the delta 
biases of the spectral moment estimates introduced by the RDR algorithm for non-
contaminated gates if they was treated as contaminated by the RDR algorithm. For 
stratiform precipitation, the delta bias of signal power caused by the RDR algorithm 
for non-contaminated gates are within ±0.5 dB and the delta bias of velocity and 
spectrum width are less than ±0.5 ms−1 for SNR range from 12 dB to 52 dB. For 
convective storm, the delta biases of signal power is within ±1 dB and the delta biases 
of velocity and spectrum width are less than ±0.5 ms−1 . Figure 3.28 and 3.29 shows 
that the delta biases of the spectral moment estimates caused by the RDR algorithm 
are small for non-contaminated gates, and they justify the use of a conservative esti­
mation of contaminated gates based on the known locations of the wind turbines as 
the approximate knowledge of the contaminated gates. 

3.3 Performance on Real Radar Data 

The RDR algorithm performed well in mitigating the WTC contamination in the 
simulations, but it must be tested on real data as well. The data set selected to test 
the RDR algorithm was collected by the KOUN research radar located in Norman, 
OK, on June 29, 2011, at 11:29:57 UTC at an elevation of 0.5 degree. The PPI plots 
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Figure 3.28: Mean delta biases of the three spectral moment estimates of range gates 
that were non-contaminated but were treated as contaminated by the RDR algorithm 
for stratiform precipitation. The x-axis is the SNR of the weather signal. 
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Figure 3.29: Same as Figure 3.28 except for convective storm. 

of the spectral moment estimates before and after applying the RDR algorithm are 
shown in Figure 3.30 
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Figure 3.30: PPI plots of the spectral moment estimates before and after applying the RDR algorithm along with the estimated
contaminated gates and the gates actually affected by the RDR algorithm. SNR censoring was done on the PPI plots with 2 dB
threshold for signal power and 3.5 dB threshold for velocity and spectrum width. 



The top right plot in Figure 3.30 shows the known contaminated gates locations 
used by the RDR algorithm. It was generated by dilating a WTC clutter map with 
a three by three square structuring element. The initial WTC clutter map was gen­
erated by measuring the distance and azimuth angle of each wind turbine to the 
radar using GPS location information from the FAA. Since the uncontaminated spec­
tral moment estimates were unknown, the performance of the RDR algorithm can 
only be evaluated qualitatively. Before applying the RDR algorithm, the contami­
nated range gates have observable elevated power level, random velocities that are 
distinct from neighboring gates, and large spectrum width. After applying the RDR 
algorithm, the elevated power level are reduced and matches the power level of the 
neighboring gates. Similarly, the large velocity fluctuations in the contaminated gates 
are eliminated and the new velocity estimates matches the velocity estimates of the 
neighboring gates. The spectrum width estimates after are smaller than the original 
estimates after applying the RDR algorithm. It is unfortunate that the WTC con­
taminated gates are located in a region with low SNR so the improvements in the 
spectrum width estimates are not as clear as the improvements in signal power and 
velocity estimates. The bottom right plot of Figure 3.30 shows the range gates where 
the RDR algorithm produced different spectral moment estimates than the original 
estimates. Comparing the gates actually affected by the RDR algorithm to the ap­
proximate clutter map above shows that a conservatively estimated clutter map is a 
good way to approximate the knowledge of the contaminated gates since the RDR 
algorithm is capable of leaving miss identified gates alone. 

The RDR algorithm could reduce the biases caused by WTC contamination in 
real observations, but several issues must be solved before it can be developed into an 
operational algorithm. First, the performance dependence on the number of samples 
in the time series need to be studied. In the simulations, the number of samples 
of each time series was set to 80, but there are often less samples available in real 
observations. Secondly, in the simulations and the real data, there were no range 
overlaid echos, which would need special handling in an operation algorithm. Finally, 
to satisfy the accuracy requirement of an operational algorithm, the variance of the 
delta biases after applying the RDR algorithm need to be reduced. 
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Chapter 4
 

Conclusions and Proposed Path Forward
 

Over the performance period of this project, several WTC mitigation schemes, based 
on advanced signal processing methods, have been explored. Adaptive beamforming, 
wavelet transformation, and other non-stationary signal processing techniques are a 
few examples. After this extensive review of the state-of-the-art, the most poten­
tial has been found in image processing methods based on mimicking the ability of 
humans to perceive continuity, or flow, in images. For the weather radar case, the at­
mosphere is a fluid governed by the viscosity and dynamics of the medium. As such, 
the desired weather signal must exhibit spatial continuity especially in the range-
Doppler domain, as shown by several examples in this report. Of course, limitations 
exist for this assumption in high wind shear or heterogeneous precipitation events. 
Nevertheless, spatial continuity in the weather signal does exist on some scale, and it 
is this difference with the highly discontinuous WTC signal that is exploited in the 
proposed solution to the wind turbine clutter challenge. 

In Chapter 2, the concept of the range-Doppler spectrum was explored. By simple 
examination of typical weather examples, it became readily clear that spatial conti­
nuity was an obvious discriminator between weather and WTC. An edge detection 
method was presented with the goal of automatically determining uncontaminated 
Fourier bins in the range-Doppler spectrum to be used for moment estimation. Some 
advantages, but even more disadvantages, for this method were discussed, which gave 
rise to the development of the proposed Range-Doppler Regression (RDR) algorithm. 
Assuming the locations of the turbines are known, the RDR algorithm uses the differ­
ences between WTC and weather signals in the range-Doppler spectrum with the goal 
of determining which Fourier bins to use for information extraction. Unlike the edge 
detection method, RDR more effectively uses the spatial continuity of the weather 
signal in range. Extensive optimization results of the RDR algorithm were presented 
in Chapter 3 using sophisticated simulation methods based on actual WTC data from 
the Dodge City, Kansas WSR-88D radar. Care was taken to create a comprehensive 
and realistic simulation framework in which to evaluate the proposed RDR method. 
After optimization of the governing parameters of the algorithm, a test case was per­
formed on actual data from the KOUN WSR-88D radar in Norman, Oklahoma. Both 
the statistical analysis and the real-data case show that the RDR method has great 
potential for solving the WTC problem and for realtime implementation, given that 
the processing is conducted in range time. It should also be noted that performance 
on a phased array radar with no beam smearing effects would be greatly enhanced. 

Although preliminary analyses show great promise for the RDR algorithm as an 
operational tool for WTC mitigation, a concept of operations has not yet been de­
fined. A comprehensive analysis using a wider variety of real data cases is needed to 
fully quantify the performance of the technique in operational settings and justify its 
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real-time implementation. However, a real-time implementation has to balance per­
formance improvements with existing computational resources. Thus, careful design 
work is crucial to fit the RDR algorithm into the existing digital-signal-processing 
pipeline. Another important consideration stems from the ongoing upgrade of the 
NEXRAD network to include dual-polarimetric capabilities. It is believed that the 
addition of polarimetric range-Doppler spectra will prove useful in improving the 
robustness of the algorithm. Preliminary analysis of data collected with NSSL’s po­
larimetric X-band mobile radar revealed WTC signatures that could be exploited in a 
similar fashion as described in this report. However, much work is needed to validate 
these assessments. 

For these reasons, we are recommending that the RDR algorithm be 
strongly considered for an aggressive implementation program. 
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